Description: Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple <. S , F >. where S is the totally ordered splitting field and F is an injective homomorphism from the original field r . (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-sfl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csf | |
|
1 | vr | |
|
2 | cvv | |
|
3 | vp | |
|
4 | vx | |
|
5 | vf | |
|
6 | 5 | cv | |
7 | clt | |
|
8 | cplt | |
|
9 | 1 | cv | |
10 | 9 8 | cfv | |
11 | c1 | |
|
12 | cfz | |
|
13 | chash | |
|
14 | 3 | cv | |
15 | 14 13 | cfv | |
16 | 11 15 12 | co | |
17 | 16 14 7 10 6 | wiso | |
18 | 4 | cv | |
19 | cc0 | |
|
20 | ve | |
|
21 | vg | |
|
22 | csf1 | |
|
23 | 20 | cv | |
24 | 9 23 22 | co | |
25 | 21 | cv | |
26 | 25 24 | cfv | |
27 | 20 21 2 2 26 | cmpo | |
28 | cid | |
|
29 | cbs | |
|
30 | 9 29 | cfv | |
31 | 28 30 | cres | |
32 | 9 31 | cop | |
33 | 19 32 | cop | |
34 | 33 | csn | |
35 | 6 34 | cun | |
36 | 27 35 19 | cseq | |
37 | 15 36 | cfv | |
38 | 18 37 | wceq | |
39 | 17 38 | wa | |
40 | 39 5 | wex | |
41 | 40 4 | cio | |
42 | 1 3 2 2 41 | cmpo | |
43 | 0 42 | wceq | |