Metamath Proof Explorer


Definition df-sfl

Description: Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple <. S , F >. where S is the totally ordered splitting field and F is an injective homomorphism from the original field r . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-sfl splitFld=rV,pVιx|ffIsom<,<r1ppx=seq0eV,gVrsplitFld1egf0rIBaserp

Detailed syntax breakdown

Step Hyp Ref Expression
0 csf classsplitFld
1 vr setvarr
2 cvv classV
3 vp setvarp
4 vx setvarx
5 vf setvarf
6 5 cv setvarf
7 clt class<
8 cplt classlt
9 1 cv setvarr
10 9 8 cfv class<r
11 c1 class1
12 cfz class
13 chash class.
14 3 cv setvarp
15 14 13 cfv classp
16 11 15 12 co class1p
17 16 14 7 10 6 wiso wfffIsom<,<r1pp
18 4 cv setvarx
19 cc0 class0
20 ve setvare
21 vg setvarg
22 csf1 classsplitFld1
23 20 cv setvare
24 9 23 22 co classrsplitFld1e
25 21 cv setvarg
26 25 24 cfv classrsplitFld1eg
27 20 21 2 2 26 cmpo classeV,gVrsplitFld1eg
28 cid classI
29 cbs classBase
30 9 29 cfv classBaser
31 28 30 cres classIBaser
32 9 31 cop classrIBaser
33 19 32 cop class0rIBaser
34 33 csn class0rIBaser
35 6 34 cun classf0rIBaser
36 27 35 19 cseq classseq0eV,gVrsplitFld1egf0rIBaser
37 15 36 cfv classseq0eV,gVrsplitFld1egf0rIBaserp
38 18 37 wceq wffx=seq0eV,gVrsplitFld1egf0rIBaserp
39 17 38 wa wfffIsom<,<r1ppx=seq0eV,gVrsplitFld1egf0rIBaserp
40 39 5 wex wffffIsom<,<r1ppx=seq0eV,gVrsplitFld1egf0rIBaserp
41 40 4 cio classιx|ffIsom<,<r1ppx=seq0eV,gVrsplitFld1egf0rIBaserp
42 1 3 2 2 41 cmpo classrV,pVιx|ffIsom<,<r1ppx=seq0eV,gVrsplitFld1egf0rIBaserp
43 0 42 wceq wffsplitFld=rV,pVιx|ffIsom<,<r1ppx=seq0eV,gVrsplitFld1egf0rIBaserp