Metamath Proof Explorer


Definition df-sfl

Description: Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple <. S , F >. where S is the totally ordered splitting field and F is an injective homomorphism from the original field r . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-sfl splitFld = r V , p V ι x | f f Isom < , < r 1 p p x = seq 0 e V , g V r splitFld 1 e g f 0 r I Base r p

Detailed syntax breakdown

Step Hyp Ref Expression
0 csf class splitFld
1 vr setvar r
2 cvv class V
3 vp setvar p
4 vx setvar x
5 vf setvar f
6 5 cv setvar f
7 clt class <
8 cplt class lt
9 1 cv setvar r
10 9 8 cfv class < r
11 c1 class 1
12 cfz class
13 chash class .
14 3 cv setvar p
15 14 13 cfv class p
16 11 15 12 co class 1 p
17 16 14 7 10 6 wiso wff f Isom < , < r 1 p p
18 4 cv setvar x
19 cc0 class 0
20 ve setvar e
21 vg setvar g
22 csf1 class splitFld 1
23 20 cv setvar e
24 9 23 22 co class r splitFld 1 e
25 21 cv setvar g
26 25 24 cfv class r splitFld 1 e g
27 20 21 2 2 26 cmpo class e V , g V r splitFld 1 e g
28 cid class I
29 cbs class Base
30 9 29 cfv class Base r
31 28 30 cres class I Base r
32 9 31 cop class r I Base r
33 19 32 cop class 0 r I Base r
34 33 csn class 0 r I Base r
35 6 34 cun class f 0 r I Base r
36 27 35 19 cseq class seq 0 e V , g V r splitFld 1 e g f 0 r I Base r
37 15 36 cfv class seq 0 e V , g V r splitFld 1 e g f 0 r I Base r p
38 18 37 wceq wff x = seq 0 e V , g V r splitFld 1 e g f 0 r I Base r p
39 17 38 wa wff f Isom < , < r 1 p p x = seq 0 e V , g V r splitFld 1 e g f 0 r I Base r p
40 39 5 wex wff f f Isom < , < r 1 p p x = seq 0 e V , g V r splitFld 1 e g f 0 r I Base r p
41 40 4 cio class ι x | f f Isom < , < r 1 p p x = seq 0 e V , g V r splitFld 1 e g f 0 r I Base r p
42 1 3 2 2 41 cmpo class r V , p V ι x | f f Isom < , < r 1 p p x = seq 0 e V , g V r splitFld 1 e g f 0 r I Base r p
43 0 42 wceq wff splitFld = r V , p V ι x | f f Isom < , < r 1 p p x = seq 0 e V , g V r splitFld 1 e g f 0 r I Base r p