Step |
Hyp |
Ref |
Expression |
0 |
|
cpsl |
|- polySplitLim |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vp |
|- p |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- r |
6 |
5 4
|
cfv |
|- ( Base ` r ) |
7 |
6
|
cpw |
|- ~P ( Base ` r ) |
8 |
|
cfn |
|- Fin |
9 |
7 8
|
cin |
|- ( ~P ( Base ` r ) i^i Fin ) |
10 |
|
cmap |
|- ^m |
11 |
|
cn |
|- NN |
12 |
9 11 10
|
co |
|- ( ( ~P ( Base ` r ) i^i Fin ) ^m NN ) |
13 |
|
c1st |
|- 1st |
14 |
|
cc0 |
|- 0 |
15 |
|
vg |
|- g |
16 |
|
vq |
|- q |
17 |
15
|
cv |
|- g |
18 |
17 13
|
cfv |
|- ( 1st ` g ) |
19 |
|
ve |
|- e |
20 |
19
|
cv |
|- e |
21 |
20 13
|
cfv |
|- ( 1st ` e ) |
22 |
|
vs |
|- s |
23 |
22
|
cv |
|- s |
24 |
|
csf |
|- splitFld |
25 |
|
vx |
|- x |
26 |
16
|
cv |
|- q |
27 |
25
|
cv |
|- x |
28 |
|
c2nd |
|- 2nd |
29 |
17 28
|
cfv |
|- ( 2nd ` g ) |
30 |
27 29
|
ccom |
|- ( x o. ( 2nd ` g ) ) |
31 |
25 26 30
|
cmpt |
|- ( x e. q |-> ( x o. ( 2nd ` g ) ) ) |
32 |
31
|
crn |
|- ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) |
33 |
23 32 24
|
co |
|- ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) |
34 |
|
vf |
|- f |
35 |
34
|
cv |
|- f |
36 |
35 28
|
cfv |
|- ( 2nd ` f ) |
37 |
29 36
|
ccom |
|- ( ( 2nd ` g ) o. ( 2nd ` f ) ) |
38 |
35 37
|
cop |
|- <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. |
39 |
34 33 38
|
csb |
|- [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. |
40 |
22 21 39
|
csb |
|- [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. |
41 |
19 18 40
|
csb |
|- [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. |
42 |
15 16 2 2 41
|
cmpo |
|- ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) |
43 |
3
|
cv |
|- p |
44 |
|
c0 |
|- (/) |
45 |
5 44
|
cop |
|- <. r , (/) >. |
46 |
|
cid |
|- _I |
47 |
46 6
|
cres |
|- ( _I |` ( Base ` r ) ) |
48 |
45 47
|
cop |
|- <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. |
49 |
14 48
|
cop |
|- <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. |
50 |
49
|
csn |
|- { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } |
51 |
43 50
|
cun |
|- ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) |
52 |
42 51 14
|
cseq |
|- seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) |
53 |
13 52
|
ccom |
|- ( 1st o. seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) ) |
54 |
|
cshi |
|- shift |
55 |
|
c1 |
|- 1 |
56 |
35 55 54
|
co |
|- ( f shift 1 ) |
57 |
13 56
|
ccom |
|- ( 1st o. ( f shift 1 ) ) |
58 |
|
chlim |
|- HomLim |
59 |
28 35
|
ccom |
|- ( 2nd o. f ) |
60 |
57 59 58
|
co |
|- ( ( 1st o. ( f shift 1 ) ) HomLim ( 2nd o. f ) ) |
61 |
34 53 60
|
csb |
|- [_ ( 1st o. seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) ) / f ]_ ( ( 1st o. ( f shift 1 ) ) HomLim ( 2nd o. f ) ) |
62 |
1 3 2 12 61
|
cmpo |
|- ( r e. _V , p e. ( ( ~P ( Base ` r ) i^i Fin ) ^m NN ) |-> [_ ( 1st o. seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) ) / f ]_ ( ( 1st o. ( f shift 1 ) ) HomLim ( 2nd o. f ) ) ) |
63 |
0 62
|
wceq |
|- polySplitLim = ( r e. _V , p e. ( ( ~P ( Base ` r ) i^i Fin ) ^m NN ) |-> [_ ( 1st o. seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) ) / f ]_ ( ( 1st o. ( f shift 1 ) ) HomLim ( 2nd o. f ) ) ) |