| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpsl |
|- polySplitLim |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vp |
|- p |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( Base ` r ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` r ) |
| 8 |
|
cfn |
|- Fin |
| 9 |
7 8
|
cin |
|- ( ~P ( Base ` r ) i^i Fin ) |
| 10 |
|
cmap |
|- ^m |
| 11 |
|
cn |
|- NN |
| 12 |
9 11 10
|
co |
|- ( ( ~P ( Base ` r ) i^i Fin ) ^m NN ) |
| 13 |
|
c1st |
|- 1st |
| 14 |
|
cc0 |
|- 0 |
| 15 |
|
vg |
|- g |
| 16 |
|
vq |
|- q |
| 17 |
15
|
cv |
|- g |
| 18 |
17 13
|
cfv |
|- ( 1st ` g ) |
| 19 |
|
ve |
|- e |
| 20 |
19
|
cv |
|- e |
| 21 |
20 13
|
cfv |
|- ( 1st ` e ) |
| 22 |
|
vs |
|- s |
| 23 |
22
|
cv |
|- s |
| 24 |
|
csf |
|- splitFld |
| 25 |
|
vx |
|- x |
| 26 |
16
|
cv |
|- q |
| 27 |
25
|
cv |
|- x |
| 28 |
|
c2nd |
|- 2nd |
| 29 |
17 28
|
cfv |
|- ( 2nd ` g ) |
| 30 |
27 29
|
ccom |
|- ( x o. ( 2nd ` g ) ) |
| 31 |
25 26 30
|
cmpt |
|- ( x e. q |-> ( x o. ( 2nd ` g ) ) ) |
| 32 |
31
|
crn |
|- ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) |
| 33 |
23 32 24
|
co |
|- ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) |
| 34 |
|
vf |
|- f |
| 35 |
34
|
cv |
|- f |
| 36 |
35 28
|
cfv |
|- ( 2nd ` f ) |
| 37 |
29 36
|
ccom |
|- ( ( 2nd ` g ) o. ( 2nd ` f ) ) |
| 38 |
35 37
|
cop |
|- <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. |
| 39 |
34 33 38
|
csb |
|- [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. |
| 40 |
22 21 39
|
csb |
|- [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. |
| 41 |
19 18 40
|
csb |
|- [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. |
| 42 |
15 16 2 2 41
|
cmpo |
|- ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) |
| 43 |
3
|
cv |
|- p |
| 44 |
|
c0 |
|- (/) |
| 45 |
5 44
|
cop |
|- <. r , (/) >. |
| 46 |
|
cid |
|- _I |
| 47 |
46 6
|
cres |
|- ( _I |` ( Base ` r ) ) |
| 48 |
45 47
|
cop |
|- <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. |
| 49 |
14 48
|
cop |
|- <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. |
| 50 |
49
|
csn |
|- { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } |
| 51 |
43 50
|
cun |
|- ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) |
| 52 |
42 51 14
|
cseq |
|- seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) |
| 53 |
13 52
|
ccom |
|- ( 1st o. seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) ) |
| 54 |
|
cshi |
|- shift |
| 55 |
|
c1 |
|- 1 |
| 56 |
35 55 54
|
co |
|- ( f shift 1 ) |
| 57 |
13 56
|
ccom |
|- ( 1st o. ( f shift 1 ) ) |
| 58 |
|
chlim |
|- HomLim |
| 59 |
28 35
|
ccom |
|- ( 2nd o. f ) |
| 60 |
57 59 58
|
co |
|- ( ( 1st o. ( f shift 1 ) ) HomLim ( 2nd o. f ) ) |
| 61 |
34 53 60
|
csb |
|- [_ ( 1st o. seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) ) / f ]_ ( ( 1st o. ( f shift 1 ) ) HomLim ( 2nd o. f ) ) |
| 62 |
1 3 2 12 61
|
cmpo |
|- ( r e. _V , p e. ( ( ~P ( Base ` r ) i^i Fin ) ^m NN ) |-> [_ ( 1st o. seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) ) / f ]_ ( ( 1st o. ( f shift 1 ) ) HomLim ( 2nd o. f ) ) ) |
| 63 |
0 62
|
wceq |
|- polySplitLim = ( r e. _V , p e. ( ( ~P ( Base ` r ) i^i Fin ) ^m NN ) |-> [_ ( 1st o. seq 0 ( ( g e. _V , q e. _V |-> [_ ( 1st ` g ) / e ]_ [_ ( 1st ` e ) / s ]_ [_ ( s splitFld ran ( x e. q |-> ( x o. ( 2nd ` g ) ) ) ) / f ]_ <. f , ( ( 2nd ` g ) o. ( 2nd ` f ) ) >. ) , ( p u. { <. 0 , <. <. r , (/) >. , ( _I |` ( Base ` r ) ) >. >. } ) ) ) / f ]_ ( ( 1st o. ( f shift 1 ) ) HomLim ( 2nd o. f ) ) ) |