Description: Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring r , a strict order on r , and a sequence p : NN --> ( ~P r i^i Fin ) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim . (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-psl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpsl | |
|
1 | vr | |
|
2 | cvv | |
|
3 | vp | |
|
4 | cbs | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | 6 | cpw | |
8 | cfn | |
|
9 | 7 8 | cin | |
10 | cmap | |
|
11 | cn | |
|
12 | 9 11 10 | co | |
13 | c1st | |
|
14 | cc0 | |
|
15 | vg | |
|
16 | vq | |
|
17 | 15 | cv | |
18 | 17 13 | cfv | |
19 | ve | |
|
20 | 19 | cv | |
21 | 20 13 | cfv | |
22 | vs | |
|
23 | 22 | cv | |
24 | csf | |
|
25 | vx | |
|
26 | 16 | cv | |
27 | 25 | cv | |
28 | c2nd | |
|
29 | 17 28 | cfv | |
30 | 27 29 | ccom | |
31 | 25 26 30 | cmpt | |
32 | 31 | crn | |
33 | 23 32 24 | co | |
34 | vf | |
|
35 | 34 | cv | |
36 | 35 28 | cfv | |
37 | 29 36 | ccom | |
38 | 35 37 | cop | |
39 | 34 33 38 | csb | |
40 | 22 21 39 | csb | |
41 | 19 18 40 | csb | |
42 | 15 16 2 2 41 | cmpo | |
43 | 3 | cv | |
44 | c0 | |
|
45 | 5 44 | cop | |
46 | cid | |
|
47 | 46 6 | cres | |
48 | 45 47 | cop | |
49 | 14 48 | cop | |
50 | 49 | csn | |
51 | 43 50 | cun | |
52 | 42 51 14 | cseq | |
53 | 13 52 | ccom | |
54 | cshi | |
|
55 | c1 | |
|
56 | 35 55 54 | co | |
57 | 13 56 | ccom | |
58 | chlim | |
|
59 | 28 35 | ccom | |
60 | 57 59 58 | co | |
61 | 34 53 60 | csb | |
62 | 1 3 2 12 61 | cmpo | |
63 | 0 62 | wceq | |