Metamath Proof Explorer


Definition df-psl

Description: Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring r , a strict order on r , and a sequence p : NN --> ( ~P r i^i Fin ) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-psl polySplitLim=rV,p𝒫BaserFin1stseq0gV,qV1stg/e1ste/sssplitFldranxqx2ndg/ff2ndg2ndfp0rIBaser/f1stfshift1HomLim2ndf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsl classpolySplitLim
1 vr setvarr
2 cvv classV
3 vp setvarp
4 cbs classBase
5 1 cv setvarr
6 5 4 cfv classBaser
7 6 cpw class𝒫Baser
8 cfn classFin
9 7 8 cin class𝒫BaserFin
10 cmap class𝑚
11 cn class
12 9 11 10 co class𝒫BaserFin
13 c1st class1st
14 cc0 class0
15 vg setvarg
16 vq setvarq
17 15 cv setvarg
18 17 13 cfv class1stg
19 ve setvare
20 19 cv setvare
21 20 13 cfv class1ste
22 vs setvars
23 22 cv setvars
24 csf classsplitFld
25 vx setvarx
26 16 cv setvarq
27 25 cv setvarx
28 c2nd class2nd
29 17 28 cfv class2ndg
30 27 29 ccom classx2ndg
31 25 26 30 cmpt classxqx2ndg
32 31 crn classranxqx2ndg
33 23 32 24 co classssplitFldranxqx2ndg
34 vf setvarf
35 34 cv setvarf
36 35 28 cfv class2ndf
37 29 36 ccom class2ndg2ndf
38 35 37 cop classf2ndg2ndf
39 34 33 38 csb classssplitFldranxqx2ndg/ff2ndg2ndf
40 22 21 39 csb class1ste/sssplitFldranxqx2ndg/ff2ndg2ndf
41 19 18 40 csb class1stg/e1ste/sssplitFldranxqx2ndg/ff2ndg2ndf
42 15 16 2 2 41 cmpo classgV,qV1stg/e1ste/sssplitFldranxqx2ndg/ff2ndg2ndf
43 3 cv setvarp
44 c0 class
45 5 44 cop classr
46 cid classI
47 46 6 cres classIBaser
48 45 47 cop classrIBaser
49 14 48 cop class0rIBaser
50 49 csn class0rIBaser
51 43 50 cun classp0rIBaser
52 42 51 14 cseq classseq0gV,qV1stg/e1ste/sssplitFldranxqx2ndg/ff2ndg2ndfp0rIBaser
53 13 52 ccom class1stseq0gV,qV1stg/e1ste/sssplitFldranxqx2ndg/ff2ndg2ndfp0rIBaser
54 cshi classshift
55 c1 class1
56 35 55 54 co classfshift1
57 13 56 ccom class1stfshift1
58 chlim classHomLim
59 28 35 ccom class2ndf
60 57 59 58 co class1stfshift1HomLim2ndf
61 34 53 60 csb class1stseq0gV,qV1stg/e1ste/sssplitFldranxqx2ndg/ff2ndg2ndfp0rIBaser/f1stfshift1HomLim2ndf
62 1 3 2 12 61 cmpo classrV,p𝒫BaserFin1stseq0gV,qV1stg/e1ste/sssplitFldranxqx2ndg/ff2ndg2ndfp0rIBaser/f1stfshift1HomLim2ndf
63 0 62 wceq wffpolySplitLim=rV,p𝒫BaserFin1stseq0gV,qV1stg/e1ste/sssplitFldranxqx2ndg/ff2ndg2ndfp0rIBaser/f1stfshift1HomLim2ndf