Metamath Proof Explorer


Definition df-homlim

Description: The input to this function is a sequence (on NN ) of structures R ( n ) and homomorphisms F ( n ) : R ( n ) --> R ( n + 1 ) . The resulting structure is the direct limit of the direct system so defined, and maintains any structures that were present in the original objects. TODO: generalize to directed sets? (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-homlim HomLim=rV,fVHomLimBf/e1ste/v2nde/gBasendxv+ndxnranxdomgn,ydomgngnxgnygnx+rnyndxnranxdomgn,ydomgngnxgnygnxrnyTopOpenndxs𝒫v|ngn-1sTopOpenrndistndxnranxdomgnn,ydomgnngnxgnyxdistrnyndxngn-1rngn

Detailed syntax breakdown

Step Hyp Ref Expression
0 chlim classHomLim
1 vr setvarr
2 cvv classV
3 vf setvarf
4 chlb classHomLimB
5 3 cv setvarf
6 5 4 cfv classHomLimBf
7 ve setvare
8 c1st class1st
9 7 cv setvare
10 9 8 cfv class1ste
11 vv setvarv
12 c2nd class2nd
13 9 12 cfv class2nde
14 vg setvarg
15 cbs classBase
16 cnx classndx
17 16 15 cfv classBasendx
18 11 cv setvarv
19 17 18 cop classBasendxv
20 cplusg class+𝑔
21 16 20 cfv class+ndx
22 vn setvarn
23 cn class
24 vx setvarx
25 14 cv setvarg
26 22 cv setvarn
27 26 25 cfv classgn
28 27 cdm classdomgn
29 vy setvary
30 24 cv setvarx
31 30 27 cfv classgnx
32 29 cv setvary
33 32 27 cfv classgny
34 31 33 cop classgnxgny
35 1 cv setvarr
36 26 35 cfv classrn
37 36 20 cfv class+rn
38 30 32 37 co classx+rny
39 38 27 cfv classgnx+rny
40 34 39 cop classgnxgnygnx+rny
41 24 29 28 28 40 cmpo classxdomgn,ydomgngnxgnygnx+rny
42 41 crn classranxdomgn,ydomgngnxgnygnx+rny
43 22 23 42 ciun classnranxdomgn,ydomgngnxgnygnx+rny
44 21 43 cop class+ndxnranxdomgn,ydomgngnxgnygnx+rny
45 cmulr class𝑟
46 16 45 cfv classndx
47 36 45 cfv classrn
48 30 32 47 co classxrny
49 48 27 cfv classgnxrny
50 34 49 cop classgnxgnygnxrny
51 24 29 28 28 50 cmpo classxdomgn,ydomgngnxgnygnxrny
52 51 crn classranxdomgn,ydomgngnxgnygnxrny
53 22 23 52 ciun classnranxdomgn,ydomgngnxgnygnxrny
54 46 53 cop classndxnranxdomgn,ydomgngnxgnygnxrny
55 19 44 54 ctp classBasendxv+ndxnranxdomgn,ydomgngnxgnygnx+rnyndxnranxdomgn,ydomgngnxgnygnxrny
56 ctopn classTopOpen
57 16 56 cfv classTopOpenndx
58 vs setvars
59 18 cpw class𝒫v
60 27 ccnv classgn-1
61 58 cv setvars
62 60 61 cima classgn-1s
63 36 56 cfv classTopOpenrn
64 62 63 wcel wffgn-1sTopOpenrn
65 64 22 23 wral wffngn-1sTopOpenrn
66 65 58 59 crab classs𝒫v|ngn-1sTopOpenrn
67 57 66 cop classTopOpenndxs𝒫v|ngn-1sTopOpenrn
68 cds classdist
69 16 68 cfv classdistndx
70 26 27 cfv classgnn
71 70 cdm classdomgnn
72 36 68 cfv classdistrn
73 30 32 72 co classxdistrny
74 34 73 cop classgnxgnyxdistrny
75 24 29 71 71 74 cmpo classxdomgnn,ydomgnngnxgnyxdistrny
76 75 crn classranxdomgnn,ydomgnngnxgnyxdistrny
77 22 23 76 ciun classnranxdomgnn,ydomgnngnxgnyxdistrny
78 69 77 cop classdistndxnranxdomgnn,ydomgnngnxgnyxdistrny
79 cple classle
80 16 79 cfv classndx
81 36 79 cfv classrn
82 81 27 ccom classrngn
83 60 82 ccom classgn-1rngn
84 22 23 83 ciun classngn-1rngn
85 80 84 cop classndxngn-1rngn
86 67 78 85 ctp classTopOpenndxs𝒫v|ngn-1sTopOpenrndistndxnranxdomgnn,ydomgnngnxgnyxdistrnyndxngn-1rngn
87 55 86 cun classBasendxv+ndxnranxdomgn,ydomgngnxgnygnx+rnyndxnranxdomgn,ydomgngnxgnygnxrnyTopOpenndxs𝒫v|ngn-1sTopOpenrndistndxnranxdomgnn,ydomgnngnxgnyxdistrnyndxngn-1rngn
88 14 13 87 csb class2nde/gBasendxv+ndxnranxdomgn,ydomgngnxgnygnx+rnyndxnranxdomgn,ydomgngnxgnygnxrnyTopOpenndxs𝒫v|ngn-1sTopOpenrndistndxnranxdomgnn,ydomgnngnxgnyxdistrnyndxngn-1rngn
89 11 10 88 csb class1ste/v2nde/gBasendxv+ndxnranxdomgn,ydomgngnxgnygnx+rnyndxnranxdomgn,ydomgngnxgnygnxrnyTopOpenndxs𝒫v|ngn-1sTopOpenrndistndxnranxdomgnn,ydomgnngnxgnyxdistrnyndxngn-1rngn
90 7 6 89 csb classHomLimBf/e1ste/v2nde/gBasendxv+ndxnranxdomgn,ydomgngnxgnygnx+rnyndxnranxdomgn,ydomgngnxgnygnxrnyTopOpenndxs𝒫v|ngn-1sTopOpenrndistndxnranxdomgnn,ydomgnngnxgnyxdistrnyndxngn-1rngn
91 1 3 2 2 90 cmpo classrV,fVHomLimBf/e1ste/v2nde/gBasendxv+ndxnranxdomgn,ydomgngnxgnygnx+rnyndxnranxdomgn,ydomgngnxgnygnxrnyTopOpenndxs𝒫v|ngn-1sTopOpenrndistndxnranxdomgnn,ydomgnngnxgnyxdistrnyndxngn-1rngn
92 0 91 wceq wffHomLim=rV,fVHomLimBf/e1ste/v2nde/gBasendxv+ndxnranxdomgn,ydomgngnxgnygnx+rnyndxnranxdomgn,ydomgngnxgnygnxrnyTopOpenndxs𝒫v|ngn-1sTopOpenrndistndxnranxdomgnn,ydomgnngnxgnyxdistrnyndxngn-1rngn