Metamath Proof Explorer


Definition df-homlim

Description: The input to this function is a sequence (on NN ) of structures R ( n ) and homomorphisms F ( n ) : R ( n ) --> R ( n + 1 ) . The resulting structure is the direct limit of the direct system so defined, and maintains any structures that were present in the original objects. TODO: generalize to directed sets? (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-homlim HomLim = r V , f V HomLimB f / e 1 st e / v 2 nd e / g Base ndx v + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y ndx n ran x dom g n , y dom g n g n x g n y g n x r n y TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y ndx n g n -1 r n g n

Detailed syntax breakdown

Step Hyp Ref Expression
0 chlim class HomLim
1 vr setvar r
2 cvv class V
3 vf setvar f
4 chlb class HomLimB
5 3 cv setvar f
6 5 4 cfv class HomLimB f
7 ve setvar e
8 c1st class 1 st
9 7 cv setvar e
10 9 8 cfv class 1 st e
11 vv setvar v
12 c2nd class 2 nd
13 9 12 cfv class 2 nd e
14 vg setvar g
15 cbs class Base
16 cnx class ndx
17 16 15 cfv class Base ndx
18 11 cv setvar v
19 17 18 cop class Base ndx v
20 cplusg class + 𝑔
21 16 20 cfv class + ndx
22 vn setvar n
23 cn class
24 vx setvar x
25 14 cv setvar g
26 22 cv setvar n
27 26 25 cfv class g n
28 27 cdm class dom g n
29 vy setvar y
30 24 cv setvar x
31 30 27 cfv class g n x
32 29 cv setvar y
33 32 27 cfv class g n y
34 31 33 cop class g n x g n y
35 1 cv setvar r
36 26 35 cfv class r n
37 36 20 cfv class + r n
38 30 32 37 co class x + r n y
39 38 27 cfv class g n x + r n y
40 34 39 cop class g n x g n y g n x + r n y
41 24 29 28 28 40 cmpo class x dom g n , y dom g n g n x g n y g n x + r n y
42 41 crn class ran x dom g n , y dom g n g n x g n y g n x + r n y
43 22 23 42 ciun class n ran x dom g n , y dom g n g n x g n y g n x + r n y
44 21 43 cop class + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y
45 cmulr class 𝑟
46 16 45 cfv class ndx
47 36 45 cfv class r n
48 30 32 47 co class x r n y
49 48 27 cfv class g n x r n y
50 34 49 cop class g n x g n y g n x r n y
51 24 29 28 28 50 cmpo class x dom g n , y dom g n g n x g n y g n x r n y
52 51 crn class ran x dom g n , y dom g n g n x g n y g n x r n y
53 22 23 52 ciun class n ran x dom g n , y dom g n g n x g n y g n x r n y
54 46 53 cop class ndx n ran x dom g n , y dom g n g n x g n y g n x r n y
55 19 44 54 ctp class Base ndx v + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y ndx n ran x dom g n , y dom g n g n x g n y g n x r n y
56 ctopn class TopOpen
57 16 56 cfv class TopOpen ndx
58 vs setvar s
59 18 cpw class 𝒫 v
60 27 ccnv class g n -1
61 58 cv setvar s
62 60 61 cima class g n -1 s
63 36 56 cfv class TopOpen r n
64 62 63 wcel wff g n -1 s TopOpen r n
65 64 22 23 wral wff n g n -1 s TopOpen r n
66 65 58 59 crab class s 𝒫 v | n g n -1 s TopOpen r n
67 57 66 cop class TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n
68 cds class dist
69 16 68 cfv class dist ndx
70 26 27 cfv class g n n
71 70 cdm class dom g n n
72 36 68 cfv class dist r n
73 30 32 72 co class x dist r n y
74 34 73 cop class g n x g n y x dist r n y
75 24 29 71 71 74 cmpo class x dom g n n , y dom g n n g n x g n y x dist r n y
76 75 crn class ran x dom g n n , y dom g n n g n x g n y x dist r n y
77 22 23 76 ciun class n ran x dom g n n , y dom g n n g n x g n y x dist r n y
78 69 77 cop class dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y
79 cple class le
80 16 79 cfv class ndx
81 36 79 cfv class r n
82 81 27 ccom class r n g n
83 60 82 ccom class g n -1 r n g n
84 22 23 83 ciun class n g n -1 r n g n
85 80 84 cop class ndx n g n -1 r n g n
86 67 78 85 ctp class TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y ndx n g n -1 r n g n
87 55 86 cun class Base ndx v + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y ndx n ran x dom g n , y dom g n g n x g n y g n x r n y TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y ndx n g n -1 r n g n
88 14 13 87 csb class 2 nd e / g Base ndx v + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y ndx n ran x dom g n , y dom g n g n x g n y g n x r n y TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y ndx n g n -1 r n g n
89 11 10 88 csb class 1 st e / v 2 nd e / g Base ndx v + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y ndx n ran x dom g n , y dom g n g n x g n y g n x r n y TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y ndx n g n -1 r n g n
90 7 6 89 csb class HomLimB f / e 1 st e / v 2 nd e / g Base ndx v + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y ndx n ran x dom g n , y dom g n g n x g n y g n x r n y TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y ndx n g n -1 r n g n
91 1 3 2 2 90 cmpo class r V , f V HomLimB f / e 1 st e / v 2 nd e / g Base ndx v + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y ndx n ran x dom g n , y dom g n g n x g n y g n x r n y TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y ndx n g n -1 r n g n
92 0 91 wceq wff HomLim = r V , f V HomLimB f / e 1 st e / v 2 nd e / g Base ndx v + ndx n ran x dom g n , y dom g n g n x g n y g n x + r n y ndx n ran x dom g n , y dom g n g n x g n y g n x r n y TopOpen ndx s 𝒫 v | n g n -1 s TopOpen r n dist ndx n ran x dom g n n , y dom g n n g n x g n y x dist r n y ndx n g n -1 r n g n