Metamath Proof Explorer


Definition df-homlimb

Description: The input to this function is a sequence (on NN ) of homomorphisms F ( n ) : R ( n ) --> R ( n + 1 ) . The resulting structure is the direct limit of the direct system so defined. This function returns the pair <. S , G >. where S is the terminal object and G is a sequence of functions such that G ( n ) : R ( n ) --> S and G ( n ) = F ( n ) o. G ( n + 1 ) . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-homlimb HomLimB=fVnn×domfn/vs|sErvxv1stx+1f1stx2ndxs/ev/enxdomfnnxe

Detailed syntax breakdown

Step Hyp Ref Expression
0 chlb classHomLimB
1 vf setvarf
2 cvv classV
3 vn setvarn
4 cn class
5 3 cv setvarn
6 5 csn classn
7 1 cv setvarf
8 5 7 cfv classfn
9 8 cdm classdomfn
10 6 9 cxp classn×domfn
11 3 4 10 ciun classnn×domfn
12 vv setvarv
13 vs setvars
14 13 cv setvars
15 12 cv setvarv
16 15 14 wer wffsErv
17 vx setvarx
18 c1st class1st
19 17 cv setvarx
20 19 18 cfv class1stx
21 caddc class+
22 c1 class1
23 20 22 21 co class1stx+1
24 20 7 cfv classf1stx
25 c2nd class2nd
26 19 25 cfv class2ndx
27 26 24 cfv classf1stx2ndx
28 23 27 cop class1stx+1f1stx2ndx
29 17 15 28 cmpt classxv1stx+1f1stx2ndx
30 29 14 wss wffxv1stx+1f1stx2ndxs
31 16 30 wa wffsErvxv1stx+1f1stx2ndxs
32 31 13 cab classs|sErvxv1stx+1f1stx2ndxs
33 32 cint classs|sErvxv1stx+1f1stx2ndxs
34 ve setvare
35 34 cv setvare
36 15 35 cqs classv/e
37 5 19 cop classnx
38 37 35 cec classnxe
39 17 9 38 cmpt classxdomfnnxe
40 3 4 39 cmpt classnxdomfnnxe
41 36 40 cop classv/enxdomfnnxe
42 34 33 41 csb classs|sErvxv1stx+1f1stx2ndxs/ev/enxdomfnnxe
43 12 11 42 csb classnn×domfn/vs|sErvxv1stx+1f1stx2ndxs/ev/enxdomfnnxe
44 1 2 43 cmpt classfVnn×domfn/vs|sErvxv1stx+1f1stx2ndxs/ev/enxdomfnnxe
45 0 44 wceq wffHomLimB=fVnn×domfn/vs|sErvxv1stx+1f1stx2ndxs/ev/enxdomfnnxe