Step |
Hyp |
Ref |
Expression |
0 |
|
cpfl |
⊢ polyFld |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
cpl1 |
⊢ Poly1 |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
7 |
|
vs |
⊢ 𝑠 |
8 |
|
crsp |
⊢ RSpan |
9 |
7
|
cv |
⊢ 𝑠 |
10 |
9 8
|
cfv |
⊢ ( RSpan ‘ 𝑠 ) |
11 |
3
|
cv |
⊢ 𝑝 |
12 |
11
|
csn |
⊢ { 𝑝 } |
13 |
12 10
|
cfv |
⊢ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) |
14 |
|
vi |
⊢ 𝑖 |
15 |
|
vz |
⊢ 𝑧 |
16 |
|
cbs |
⊢ Base |
17 |
5 16
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
18 |
15
|
cv |
⊢ 𝑧 |
19 |
|
cvsca |
⊢ ·𝑠 |
20 |
9 19
|
cfv |
⊢ ( ·𝑠 ‘ 𝑠 ) |
21 |
|
cur |
⊢ 1r |
22 |
9 21
|
cfv |
⊢ ( 1r ‘ 𝑠 ) |
23 |
18 22 20
|
co |
⊢ ( 𝑧 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) |
24 |
|
cqg |
⊢ ~QG |
25 |
14
|
cv |
⊢ 𝑖 |
26 |
9 25 24
|
co |
⊢ ( 𝑠 ~QG 𝑖 ) |
27 |
23 26
|
cec |
⊢ [ ( 𝑧 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) |
28 |
15 17 27
|
cmpt |
⊢ ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) |
29 |
|
vf |
⊢ 𝑓 |
30 |
|
cqus |
⊢ /s |
31 |
9 26 30
|
co |
⊢ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) |
32 |
|
vt |
⊢ 𝑡 |
33 |
32
|
cv |
⊢ 𝑡 |
34 |
|
ctng |
⊢ toNrmGrp |
35 |
|
vn |
⊢ 𝑛 |
36 |
|
cabv |
⊢ AbsVal |
37 |
33 36
|
cfv |
⊢ ( AbsVal ‘ 𝑡 ) |
38 |
35
|
cv |
⊢ 𝑛 |
39 |
29
|
cv |
⊢ 𝑓 |
40 |
38 39
|
ccom |
⊢ ( 𝑛 ∘ 𝑓 ) |
41 |
|
cnm |
⊢ norm |
42 |
5 41
|
cfv |
⊢ ( norm ‘ 𝑟 ) |
43 |
40 42
|
wceq |
⊢ ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) |
44 |
43 35 37
|
crio |
⊢ ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) |
45 |
33 44 34
|
co |
⊢ ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) |
46 |
|
csts |
⊢ sSet |
47 |
|
cple |
⊢ le |
48 |
|
cnx |
⊢ ndx |
49 |
48 47
|
cfv |
⊢ ( le ‘ ndx ) |
50 |
33 16
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
51 |
|
vq |
⊢ 𝑞 |
52 |
|
cdg1 |
⊢ deg1 |
53 |
51
|
cv |
⊢ 𝑞 |
54 |
5 53 52
|
co |
⊢ ( 𝑟 deg1 𝑞 ) |
55 |
|
clt |
⊢ < |
56 |
5 11 52
|
co |
⊢ ( 𝑟 deg1 𝑝 ) |
57 |
54 56 55
|
wbr |
⊢ ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) |
58 |
57 51 18
|
crio |
⊢ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) |
59 |
15 50 58
|
cmpt |
⊢ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) |
60 |
|
vg |
⊢ 𝑔 |
61 |
60
|
cv |
⊢ 𝑔 |
62 |
61
|
ccnv |
⊢ ◡ 𝑔 |
63 |
9 47
|
cfv |
⊢ ( le ‘ 𝑠 ) |
64 |
63 61
|
ccom |
⊢ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) |
65 |
62 64
|
ccom |
⊢ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) |
66 |
60 59 65
|
csb |
⊢ ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) |
67 |
49 66
|
cop |
⊢ 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 |
68 |
45 67 46
|
co |
⊢ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) |
69 |
32 31 68
|
csb |
⊢ ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) |
70 |
69 39
|
cop |
⊢ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 |
71 |
29 28 70
|
csb |
⊢ ⦋ ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 |
72 |
14 13 71
|
csb |
⊢ ⦋ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ⦌ ⦋ ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 |
73 |
7 6 72
|
csb |
⊢ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ⦌ ⦋ ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 |
74 |
1 3 2 2 73
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ⦌ ⦋ ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 ) |
75 |
0 74
|
wceq |
⊢ polyFld = ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ⦌ ⦋ ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 ) |