Metamath Proof Explorer


Definition df-plfl

Description: Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-plfl polyFld = ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ( Poly1𝑟 ) / 𝑠 ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ ) , 𝑓 ⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpfl polyFld
1 vr 𝑟
2 cvv V
3 vp 𝑝
4 cpl1 Poly1
5 1 cv 𝑟
6 5 4 cfv ( Poly1𝑟 )
7 vs 𝑠
8 crsp RSpan
9 7 cv 𝑠
10 9 8 cfv ( RSpan ‘ 𝑠 )
11 3 cv 𝑝
12 11 csn { 𝑝 }
13 12 10 cfv ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } )
14 vi 𝑖
15 vz 𝑧
16 cbs Base
17 5 16 cfv ( Base ‘ 𝑟 )
18 15 cv 𝑧
19 cvsca ·𝑠
20 9 19 cfv ( ·𝑠𝑠 )
21 cur 1r
22 9 21 cfv ( 1r𝑠 )
23 18 22 20 co ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) )
24 cqg ~QG
25 14 cv 𝑖
26 9 25 24 co ( 𝑠 ~QG 𝑖 )
27 23 26 cec [ ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) ) ] ( 𝑠 ~QG 𝑖 )
28 15 17 27 cmpt ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) )
29 vf 𝑓
30 cqus /s
31 9 26 30 co ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) )
32 vt 𝑡
33 32 cv 𝑡
34 ctng toNrmGrp
35 vn 𝑛
36 cabv AbsVal
37 33 36 cfv ( AbsVal ‘ 𝑡 )
38 35 cv 𝑛
39 29 cv 𝑓
40 38 39 ccom ( 𝑛𝑓 )
41 cnm norm
42 5 41 cfv ( norm ‘ 𝑟 )
43 40 42 wceq ( 𝑛𝑓 ) = ( norm ‘ 𝑟 )
44 43 35 37 crio ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) )
45 33 44 34 co ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) )
46 csts sSet
47 cple le
48 cnx ndx
49 48 47 cfv ( le ‘ ndx )
50 33 16 cfv ( Base ‘ 𝑡 )
51 vq 𝑞
52 cdg1 deg1
53 51 cv 𝑞
54 5 53 52 co ( 𝑟 deg1 𝑞 )
55 clt <
56 5 11 52 co ( 𝑟 deg1 𝑝 )
57 54 56 55 wbr ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 )
58 57 51 18 crio ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) )
59 15 50 58 cmpt ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) )
60 vg 𝑔
61 60 cv 𝑔
62 61 ccnv 𝑔
63 9 47 cfv ( le ‘ 𝑠 )
64 63 61 ccom ( ( le ‘ 𝑠 ) ∘ 𝑔 )
65 62 64 ccom ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) )
66 60 59 65 csb ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) )
67 49 66 cop ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩
68 45 67 46 co ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ )
69 32 31 68 csb ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ )
70 69 39 cop ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ ) , 𝑓
71 29 28 70 csb ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ ) , 𝑓
72 14 13 71 csb ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ ) , 𝑓
73 7 6 72 csb ( Poly1𝑟 ) / 𝑠 ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ ) , 𝑓
74 1 3 2 2 73 cmpo ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ( Poly1𝑟 ) / 𝑠 ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ ) , 𝑓 ⟩ )
75 0 74 wceq polyFld = ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ( Poly1𝑟 ) / 𝑠 ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ( 𝑧 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑧 ( ·𝑠𝑠 ) ( 1r𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ( ( 𝑡 toNrmGrp ( 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet ⟨ ( le ‘ ndx ) , ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( 𝑞𝑧 ( 𝑟 deg1 𝑞 ) < ( 𝑟 deg1 𝑝 ) ) ) / 𝑔 ( 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) ⟩ ) , 𝑓 ⟩ )