| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpfl |
⊢ polyFld |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vp |
⊢ 𝑝 |
| 4 |
|
cpl1 |
⊢ Poly1 |
| 5 |
1
|
cv |
⊢ 𝑟 |
| 6 |
5 4
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
| 7 |
|
vs |
⊢ 𝑠 |
| 8 |
|
crsp |
⊢ RSpan |
| 9 |
7
|
cv |
⊢ 𝑠 |
| 10 |
9 8
|
cfv |
⊢ ( RSpan ‘ 𝑠 ) |
| 11 |
3
|
cv |
⊢ 𝑝 |
| 12 |
11
|
csn |
⊢ { 𝑝 } |
| 13 |
12 10
|
cfv |
⊢ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) |
| 14 |
|
vi |
⊢ 𝑖 |
| 15 |
|
vc |
⊢ 𝑐 |
| 16 |
|
cbs |
⊢ Base |
| 17 |
5 16
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 18 |
15
|
cv |
⊢ 𝑐 |
| 19 |
|
cvsca |
⊢ ·𝑠 |
| 20 |
9 19
|
cfv |
⊢ ( ·𝑠 ‘ 𝑠 ) |
| 21 |
|
cur |
⊢ 1r |
| 22 |
9 21
|
cfv |
⊢ ( 1r ‘ 𝑠 ) |
| 23 |
18 22 20
|
co |
⊢ ( 𝑐 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) |
| 24 |
|
cqg |
⊢ ~QG |
| 25 |
14
|
cv |
⊢ 𝑖 |
| 26 |
9 25 24
|
co |
⊢ ( 𝑠 ~QG 𝑖 ) |
| 27 |
23 26
|
cec |
⊢ [ ( 𝑐 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) |
| 28 |
15 17 27
|
cmpt |
⊢ ( 𝑐 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑐 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) |
| 29 |
|
vf |
⊢ 𝑓 |
| 30 |
|
cqus |
⊢ /s |
| 31 |
9 26 30
|
co |
⊢ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) |
| 32 |
|
vt |
⊢ 𝑡 |
| 33 |
32
|
cv |
⊢ 𝑡 |
| 34 |
|
ctng |
⊢ toNrmGrp |
| 35 |
|
vn |
⊢ 𝑛 |
| 36 |
|
cabv |
⊢ AbsVal |
| 37 |
33 36
|
cfv |
⊢ ( AbsVal ‘ 𝑡 ) |
| 38 |
35
|
cv |
⊢ 𝑛 |
| 39 |
29
|
cv |
⊢ 𝑓 |
| 40 |
38 39
|
ccom |
⊢ ( 𝑛 ∘ 𝑓 ) |
| 41 |
|
cnm |
⊢ norm |
| 42 |
5 41
|
cfv |
⊢ ( norm ‘ 𝑟 ) |
| 43 |
40 42
|
wceq |
⊢ ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) |
| 44 |
43 35 37
|
crio |
⊢ ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) |
| 45 |
33 44 34
|
co |
⊢ ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) |
| 46 |
|
csts |
⊢ sSet |
| 47 |
|
cple |
⊢ le |
| 48 |
|
cnx |
⊢ ndx |
| 49 |
48 47
|
cfv |
⊢ ( le ‘ ndx ) |
| 50 |
|
vz |
⊢ 𝑧 |
| 51 |
33 16
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
| 52 |
|
vq |
⊢ 𝑞 |
| 53 |
50
|
cv |
⊢ 𝑧 |
| 54 |
52
|
cv |
⊢ 𝑞 |
| 55 |
|
cr1p |
⊢ rem1p |
| 56 |
5 55
|
cfv |
⊢ ( rem1p ‘ 𝑟 ) |
| 57 |
54 11 56
|
co |
⊢ ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) |
| 58 |
57 54
|
wceq |
⊢ ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 |
| 59 |
58 52 53
|
crio |
⊢ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) |
| 60 |
50 51 59
|
cmpt |
⊢ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) |
| 61 |
|
vg |
⊢ 𝑔 |
| 62 |
61
|
cv |
⊢ 𝑔 |
| 63 |
62
|
ccnv |
⊢ ◡ 𝑔 |
| 64 |
9 47
|
cfv |
⊢ ( le ‘ 𝑠 ) |
| 65 |
64 62
|
ccom |
⊢ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) |
| 66 |
63 65
|
ccom |
⊢ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) |
| 67 |
61 60 66
|
csb |
⊢ ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) |
| 68 |
49 67
|
cop |
⊢ 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 |
| 69 |
45 68 46
|
co |
⊢ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) |
| 70 |
32 31 69
|
csb |
⊢ ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) |
| 71 |
70 39
|
cop |
⊢ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 |
| 72 |
29 28 71
|
csb |
⊢ ⦋ ( 𝑐 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑐 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 |
| 73 |
14 13 72
|
csb |
⊢ ⦋ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ⦌ ⦋ ( 𝑐 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑐 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 |
| 74 |
7 6 73
|
csb |
⊢ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ⦌ ⦋ ( 𝑐 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑐 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 |
| 75 |
1 3 2 2 74
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ⦌ ⦋ ( 𝑐 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑐 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 ) |
| 76 |
0 75
|
wceq |
⊢ polyFld = ( 𝑟 ∈ V , 𝑝 ∈ V ↦ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( ( RSpan ‘ 𝑠 ) ‘ { 𝑝 } ) / 𝑖 ⦌ ⦋ ( 𝑐 ∈ ( Base ‘ 𝑟 ) ↦ [ ( 𝑐 ( ·𝑠 ‘ 𝑠 ) ( 1r ‘ 𝑠 ) ) ] ( 𝑠 ~QG 𝑖 ) ) / 𝑓 ⦌ 〈 ⦋ ( 𝑠 /s ( 𝑠 ~QG 𝑖 ) ) / 𝑡 ⦌ ( ( 𝑡 toNrmGrp ( ℩ 𝑛 ∈ ( AbsVal ‘ 𝑡 ) ( 𝑛 ∘ 𝑓 ) = ( norm ‘ 𝑟 ) ) ) sSet 〈 ( le ‘ ndx ) , ⦋ ( 𝑧 ∈ ( Base ‘ 𝑡 ) ↦ ( ℩ 𝑞 ∈ 𝑧 ( 𝑞 ( rem1p ‘ 𝑟 ) 𝑝 ) = 𝑞 ) ) / 𝑔 ⦌ ( ◡ 𝑔 ∘ ( ( le ‘ 𝑠 ) ∘ 𝑔 ) ) 〉 ) , 𝑓 〉 ) |