Description: Define the subring of elements of r integral over s in a ring. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-irng | |- IntgRing = ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' f " { ( 0g ` r ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | citr | |- IntgRing |
|
1 | vr | |- r |
|
2 | cvv | |- _V |
|
3 | vs | |- s |
|
4 | vf | |- f |
|
5 | cmn1 | |- Monic1p |
|
6 | 1 | cv | |- r |
7 | cress | |- |`s |
|
8 | 3 | cv | |- s |
9 | 6 8 7 | co | |- ( r |`s s ) |
10 | 9 5 | cfv | |- ( Monic1p ` ( r |`s s ) ) |
11 | 4 | cv | |- f |
12 | 11 | ccnv | |- `' f |
13 | c0g | |- 0g |
|
14 | 6 13 | cfv | |- ( 0g ` r ) |
15 | 14 | csn | |- { ( 0g ` r ) } |
16 | 12 15 | cima | |- ( `' f " { ( 0g ` r ) } ) |
17 | 4 10 16 | ciun | |- U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' f " { ( 0g ` r ) } ) |
18 | 1 3 2 2 17 | cmpo | |- ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' f " { ( 0g ` r ) } ) ) |
19 | 0 18 | wceq | |- IntgRing = ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' f " { ( 0g ` r ) } ) ) |