Metamath Proof Explorer


Definition df-irng

Description: Define the subring of elements of r integral over s in a ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-irng
|- IntgRing = ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' f " { ( 0g ` r ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 citr
 |-  IntgRing
1 vr
 |-  r
2 cvv
 |-  _V
3 vs
 |-  s
4 vf
 |-  f
5 cmn1
 |-  Monic1p
6 1 cv
 |-  r
7 cress
 |-  |`s
8 3 cv
 |-  s
9 6 8 7 co
 |-  ( r |`s s )
10 9 5 cfv
 |-  ( Monic1p ` ( r |`s s ) )
11 4 cv
 |-  f
12 11 ccnv
 |-  `' f
13 c0g
 |-  0g
14 6 13 cfv
 |-  ( 0g ` r )
15 14 csn
 |-  { ( 0g ` r ) }
16 12 15 cima
 |-  ( `' f " { ( 0g ` r ) } )
17 4 10 16 ciun
 |-  U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' f " { ( 0g ` r ) } )
18 1 3 2 2 17 cmpo
 |-  ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' f " { ( 0g ` r ) } ) )
19 0 18 wceq
 |-  IntgRing = ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' f " { ( 0g ` r ) } ) )