Step |
Hyp |
Ref |
Expression |
0 |
|
cirng |
|- IntgRing |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
|
vf |
|- f |
5 |
|
cmn1 |
|- Monic1p |
6 |
1
|
cv |
|- r |
7 |
|
cress |
|- |`s |
8 |
3
|
cv |
|- s |
9 |
6 8 7
|
co |
|- ( r |`s s ) |
10 |
9 5
|
cfv |
|- ( Monic1p ` ( r |`s s ) ) |
11 |
|
ces1 |
|- evalSub1 |
12 |
6 8 11
|
co |
|- ( r evalSub1 s ) |
13 |
4
|
cv |
|- f |
14 |
13 12
|
cfv |
|- ( ( r evalSub1 s ) ` f ) |
15 |
14
|
ccnv |
|- `' ( ( r evalSub1 s ) ` f ) |
16 |
|
c0g |
|- 0g |
17 |
6 16
|
cfv |
|- ( 0g ` r ) |
18 |
17
|
csn |
|- { ( 0g ` r ) } |
19 |
15 18
|
cima |
|- ( `' ( ( r evalSub1 s ) ` f ) " { ( 0g ` r ) } ) |
20 |
4 10 19
|
ciun |
|- U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' ( ( r evalSub1 s ) ` f ) " { ( 0g ` r ) } ) |
21 |
1 3 2 2 20
|
cmpo |
|- ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' ( ( r evalSub1 s ) ` f ) " { ( 0g ` r ) } ) ) |
22 |
0 21
|
wceq |
|- IntgRing = ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' ( ( r evalSub1 s ) ` f ) " { ( 0g ` r ) } ) ) |