Metamath Proof Explorer


Definition df-irng

Description: Define the subring of elements of a ring r integral over a subset s . (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Assertion df-irng IntgRing = r V , s V f Monic 1p r 𝑠 s r evalSub 1 s f -1 0 r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cirng class IntgRing
1 vr setvar r
2 cvv class V
3 vs setvar s
4 vf setvar f
5 cmn1 class Monic 1p
6 1 cv setvar r
7 cress class 𝑠
8 3 cv setvar s
9 6 8 7 co class r 𝑠 s
10 9 5 cfv class Monic 1p r 𝑠 s
11 ces1 class evalSub 1
12 6 8 11 co class r evalSub 1 s
13 4 cv setvar f
14 13 12 cfv class r evalSub 1 s f
15 14 ccnv class r evalSub 1 s f -1
16 c0g class 0 𝑔
17 6 16 cfv class 0 r
18 17 csn class 0 r
19 15 18 cima class r evalSub 1 s f -1 0 r
20 4 10 19 ciun class f Monic 1p r 𝑠 s r evalSub 1 s f -1 0 r
21 1 3 2 2 20 cmpo class r V , s V f Monic 1p r 𝑠 s r evalSub 1 s f -1 0 r
22 0 21 wceq wff IntgRing = r V , s V f Monic 1p r 𝑠 s r evalSub 1 s f -1 0 r