Description: The elements of a field R integral over a subset S . In the case of a subfield, those are the algebraic numbers over the field S within the field R . That is, the numbers X which are roots of monic polynomials P ( X ) with coefficients in S . (Contributed by Thierry Arnoux, 28-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irngval.o | |
|
irngval.u | |
||
irngval.b | |
||
irngval.0 | |
||
irngval.r | |
||
irngval.s | |
||
Assertion | irngval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irngval.o | |
|
2 | irngval.u | |
|
3 | irngval.b | |
|
4 | irngval.0 | |
|
5 | irngval.r | |
|
6 | irngval.s | |
|
7 | 5 | elexd | |
8 | 3 | fvexi | |
9 | 8 | a1i | |
10 | 9 6 | ssexd | |
11 | fvexd | |
|
12 | fvex | |
|
13 | 12 | cnvex | |
14 | 13 | imaex | |
15 | 14 | rgenw | |
16 | iunexg | |
|
17 | 11 15 16 | sylancl | |
18 | oveq12 | |
|
19 | 18 2 | eqtr4di | |
20 | 19 | fveq2d | |
21 | oveq12 | |
|
22 | 21 1 | eqtr4di | |
23 | 22 | fveq1d | |
24 | 23 | cnveqd | |
25 | simpl | |
|
26 | 25 | fveq2d | |
27 | 26 4 | eqtr4di | |
28 | 27 | sneqd | |
29 | 24 28 | imaeq12d | |
30 | 20 29 | iuneq12d | |
31 | df-irng | |
|
32 | 30 31 | ovmpoga | |
33 | 7 10 17 32 | syl3anc | |