Metamath Proof Explorer


Theorem elirng

Description: Property for an element X of a field R to be integral over a subring S . (Contributed by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Hypotheses irngval.o O=RevalSub1S
irngval.u U=R𝑠S
irngval.b B=BaseR
irngval.0 0˙=0R
elirng.r φRCRing
elirng.s φSSubRingR
Assertion elirng φXRIntgRingSXBfMonic1pUOfX=0˙

Proof

Step Hyp Ref Expression
1 irngval.o O=RevalSub1S
2 irngval.u U=R𝑠S
3 irngval.b B=BaseR
4 irngval.0 0˙=0R
5 elirng.r φRCRing
6 elirng.s φSSubRingR
7 5 crngringd φRRing
8 3 subrgss SSubRingRSB
9 6 8 syl φSB
10 1 2 3 4 7 9 irngval φRIntgRingS=fMonic1pUOf-10˙
11 10 eleq2d φXRIntgRingSXfMonic1pUOf-10˙
12 eliun XfMonic1pUOf-10˙fMonic1pUXOf-10˙
13 11 12 bitrdi φXRIntgRingSfMonic1pUXOf-10˙
14 eqid R𝑠B=R𝑠B
15 eqid BaseR𝑠B=BaseR𝑠B
16 7 adantr φfMonic1pURRing
17 3 fvexi BV
18 17 a1i φfMonic1pUBV
19 eqid Poly1U=Poly1U
20 1 3 14 2 19 evls1rhm RCRingSSubRingROPoly1URingHomR𝑠B
21 5 6 20 syl2anc φOPoly1URingHomR𝑠B
22 eqid BasePoly1U=BasePoly1U
23 22 15 rhmf OPoly1URingHomR𝑠BO:BasePoly1UBaseR𝑠B
24 21 23 syl φO:BasePoly1UBaseR𝑠B
25 24 adantr φfMonic1pUO:BasePoly1UBaseR𝑠B
26 eqid Monic1pU=Monic1pU
27 19 22 26 mon1pcl fMonic1pUfBasePoly1U
28 27 adantl φfMonic1pUfBasePoly1U
29 25 28 ffvelcdmd φfMonic1pUOfBaseR𝑠B
30 14 3 15 16 18 29 pwselbas φfMonic1pUOf:BB
31 ffn Of:BBOfFnB
32 fniniseg OfFnBXOf-10˙XBOfX=0˙
33 30 31 32 3syl φfMonic1pUXOf-10˙XBOfX=0˙
34 33 rexbidva φfMonic1pUXOf-10˙fMonic1pUXBOfX=0˙
35 13 34 bitrd φXRIntgRingSfMonic1pUXBOfX=0˙
36 r19.42v fMonic1pUXBOfX=0˙XBfMonic1pUOfX=0˙
37 35 36 bitrdi φXRIntgRingSXBfMonic1pUOfX=0˙