Description: Property for an element X of a field R to be integral over a subring S . (Contributed by Thierry Arnoux, 28-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irngval.o | |
|
irngval.u | |
||
irngval.b | |
||
irngval.0 | |
||
elirng.r | |
||
elirng.s | |
||
Assertion | elirng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irngval.o | |
|
2 | irngval.u | |
|
3 | irngval.b | |
|
4 | irngval.0 | |
|
5 | elirng.r | |
|
6 | elirng.s | |
|
7 | 5 | crngringd | |
8 | 3 | subrgss | |
9 | 6 8 | syl | |
10 | 1 2 3 4 7 9 | irngval | |
11 | 10 | eleq2d | |
12 | eliun | |
|
13 | 11 12 | bitrdi | |
14 | eqid | |
|
15 | eqid | |
|
16 | 7 | adantr | |
17 | 3 | fvexi | |
18 | 17 | a1i | |
19 | eqid | |
|
20 | 1 3 14 2 19 | evls1rhm | |
21 | 5 6 20 | syl2anc | |
22 | eqid | |
|
23 | 22 15 | rhmf | |
24 | 21 23 | syl | |
25 | 24 | adantr | |
26 | eqid | |
|
27 | 19 22 26 | mon1pcl | |
28 | 27 | adantl | |
29 | 25 28 | ffvelcdmd | |
30 | 14 3 15 16 18 29 | pwselbas | |
31 | ffn | |
|
32 | fniniseg | |
|
33 | 30 31 32 | 3syl | |
34 | 33 | rexbidva | |
35 | 13 34 | bitrd | |
36 | r19.42v | |
|
37 | 35 36 | bitrdi | |