Metamath Proof Explorer


Theorem irngss

Description: All elements of a subring S are integral over S . This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng ). (Contributed by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Hypotheses irngval.o O = R evalSub 1 S
irngval.u U = R 𝑠 S
irngval.b B = Base R
irngval.0 0 ˙ = 0 R
elirng.r φ R CRing
elirng.s φ S SubRing R
irngss.1 φ R NzRing
Assertion irngss φ S R IntgRing S

Proof

Step Hyp Ref Expression
1 irngval.o O = R evalSub 1 S
2 irngval.u U = R 𝑠 S
3 irngval.b B = Base R
4 irngval.0 0 ˙ = 0 R
5 elirng.r φ R CRing
6 elirng.s φ S SubRing R
7 irngss.1 φ R NzRing
8 simpl φ x S φ
9 3 subrgss S SubRing R S B
10 6 9 syl φ S B
11 10 sselda φ x S x B
12 eqid Poly 1 R = Poly 1 R
13 eqid Poly 1 U = Poly 1 U
14 eqid Base Poly 1 U = Base Poly 1 U
15 6 adantr φ x S S SubRing R
16 eqid Poly 1 R 𝑠 Base Poly 1 U = Poly 1 R 𝑠 Base Poly 1 U
17 eqid var 1 R = var 1 R
18 17 15 2 13 14 subrgvr1cl φ x S var 1 R Base Poly 1 U
19 eqid algSc Poly 1 R = algSc Poly 1 R
20 simpr φ x S x S
21 19 2 12 13 14 15 20 asclply1subcl φ x S algSc Poly 1 R x Base Poly 1 U
22 12 2 13 14 15 16 18 21 ressply1sub φ x S var 1 R - Poly 1 U algSc Poly 1 R x = var 1 R - Poly 1 R 𝑠 Base Poly 1 U algSc Poly 1 R x
23 12 2 13 14 subrgply1 S SubRing R Base Poly 1 U SubRing Poly 1 R
24 subrgsubg Base Poly 1 U SubRing Poly 1 R Base Poly 1 U SubGrp Poly 1 R
25 6 23 24 3syl φ Base Poly 1 U SubGrp Poly 1 R
26 25 adantr φ x S Base Poly 1 U SubGrp Poly 1 R
27 eqid - Poly 1 R = - Poly 1 R
28 eqid - Poly 1 R 𝑠 Base Poly 1 U = - Poly 1 R 𝑠 Base Poly 1 U
29 27 16 28 subgsub Base Poly 1 U SubGrp Poly 1 R var 1 R Base Poly 1 U algSc Poly 1 R x Base Poly 1 U var 1 R - Poly 1 R algSc Poly 1 R x = var 1 R - Poly 1 R 𝑠 Base Poly 1 U algSc Poly 1 R x
30 26 18 21 29 syl3anc φ x S var 1 R - Poly 1 R algSc Poly 1 R x = var 1 R - Poly 1 R 𝑠 Base Poly 1 U algSc Poly 1 R x
31 22 30 eqtr4d φ x S var 1 R - Poly 1 U algSc Poly 1 R x = var 1 R - Poly 1 R algSc Poly 1 R x
32 2 subrgcrng R CRing S SubRing R U CRing
33 5 6 32 syl2anc φ U CRing
34 13 ply1crng U CRing Poly 1 U CRing
35 33 34 syl φ Poly 1 U CRing
36 35 adantr φ x S Poly 1 U CRing
37 36 crnggrpd φ x S Poly 1 U Grp
38 eqid - Poly 1 U = - Poly 1 U
39 14 38 grpsubcl Poly 1 U Grp var 1 R Base Poly 1 U algSc Poly 1 R x Base Poly 1 U var 1 R - Poly 1 U algSc Poly 1 R x Base Poly 1 U
40 37 18 21 39 syl3anc φ x S var 1 R - Poly 1 U algSc Poly 1 R x Base Poly 1 U
41 31 40 eqeltrrd φ x S var 1 R - Poly 1 R algSc Poly 1 R x Base Poly 1 U
42 eqid Base Poly 1 R = Base Poly 1 R
43 eqid var 1 R - Poly 1 R algSc Poly 1 R x = var 1 R - Poly 1 R algSc Poly 1 R x
44 eqid eval 1 R = eval 1 R
45 7 adantr φ x S R NzRing
46 5 adantr φ x S R CRing
47 eqid Monic 1p R = Monic 1p R
48 eqid deg 1 R = deg 1 R
49 12 42 3 17 27 19 43 44 45 46 11 47 48 4 ply1remlem φ x S var 1 R - Poly 1 R algSc Poly 1 R x Monic 1p R deg 1 R var 1 R - Poly 1 R algSc Poly 1 R x = 1 eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x -1 0 ˙ = x
50 49 simp1d φ x S var 1 R - Poly 1 R algSc Poly 1 R x Monic 1p R
51 41 50 elind φ x S var 1 R - Poly 1 R algSc Poly 1 R x Base Poly 1 U Monic 1p R
52 eqid Monic 1p U = Monic 1p U
53 12 2 13 14 6 47 52 ressply1mon1p φ Monic 1p U = Base Poly 1 U Monic 1p R
54 53 adantr φ x S Monic 1p U = Base Poly 1 U Monic 1p R
55 51 54 eleqtrrd φ x S var 1 R - Poly 1 R algSc Poly 1 R x Monic 1p U
56 fveq2 f = var 1 R - Poly 1 R algSc Poly 1 R x O f = O var 1 R - Poly 1 R algSc Poly 1 R x
57 56 fveq1d f = var 1 R - Poly 1 R algSc Poly 1 R x O f x = O var 1 R - Poly 1 R algSc Poly 1 R x x
58 57 eqeq1d f = var 1 R - Poly 1 R algSc Poly 1 R x O f x = 0 ˙ O var 1 R - Poly 1 R algSc Poly 1 R x x = 0 ˙
59 58 adantl φ x S f = var 1 R - Poly 1 R algSc Poly 1 R x O f x = 0 ˙ O var 1 R - Poly 1 R algSc Poly 1 R x x = 0 ˙
60 1 3 13 2 14 44 46 15 ressply1evl φ x S O = eval 1 R Base Poly 1 U
61 60 fveq1d φ x S O var 1 R - Poly 1 R algSc Poly 1 R x = eval 1 R Base Poly 1 U var 1 R - Poly 1 R algSc Poly 1 R x
62 41 fvresd φ x S eval 1 R Base Poly 1 U var 1 R - Poly 1 R algSc Poly 1 R x = eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x
63 61 62 eqtrd φ x S O var 1 R - Poly 1 R algSc Poly 1 R x = eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x
64 63 fveq1d φ x S O var 1 R - Poly 1 R algSc Poly 1 R x x = eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x x
65 eqid R 𝑠 B = R 𝑠 B
66 eqid Base R 𝑠 B = Base R 𝑠 B
67 3 fvexi B V
68 67 a1i φ x S B V
69 44 12 65 3 evl1rhm R CRing eval 1 R Poly 1 R RingHom R 𝑠 B
70 42 66 rhmf eval 1 R Poly 1 R RingHom R 𝑠 B eval 1 R : Base Poly 1 R Base R 𝑠 B
71 5 69 70 3syl φ eval 1 R : Base Poly 1 R Base R 𝑠 B
72 71 adantr φ x S eval 1 R : Base Poly 1 R Base R 𝑠 B
73 eqid PwSer 1 U = PwSer 1 U
74 eqid Base PwSer 1 U = Base PwSer 1 U
75 12 2 13 14 6 73 74 42 ressply1bas2 φ Base Poly 1 U = Base PwSer 1 U Base Poly 1 R
76 75 adantr φ x S Base Poly 1 U = Base PwSer 1 U Base Poly 1 R
77 41 76 eleqtrd φ x S var 1 R - Poly 1 R algSc Poly 1 R x Base PwSer 1 U Base Poly 1 R
78 77 elin2d φ x S var 1 R - Poly 1 R algSc Poly 1 R x Base Poly 1 R
79 72 78 ffvelcdmd φ x S eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x Base R 𝑠 B
80 65 3 66 45 68 79 pwselbas φ x S eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x : B B
81 80 ffnd φ x S eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x Fn B
82 vsnid x x
83 49 simp3d φ x S eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x -1 0 ˙ = x
84 82 83 eleqtrrid φ x S x eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x -1 0 ˙
85 fniniseg eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x Fn B x eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x -1 0 ˙ x B eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x x = 0 ˙
86 85 simplbda eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x Fn B x eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x -1 0 ˙ eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x x = 0 ˙
87 81 84 86 syl2anc φ x S eval 1 R var 1 R - Poly 1 R algSc Poly 1 R x x = 0 ˙
88 64 87 eqtrd φ x S O var 1 R - Poly 1 R algSc Poly 1 R x x = 0 ˙
89 55 59 88 rspcedvd φ x S f Monic 1p U O f x = 0 ˙
90 1 2 3 4 5 6 elirng φ x R IntgRing S x B f Monic 1p U O f x = 0 ˙
91 90 biimpar φ x B f Monic 1p U O f x = 0 ˙ x R IntgRing S
92 8 11 89 91 syl12anc φ x S x R IntgRing S
93 92 ex φ x S x R IntgRing S
94 93 ssrdv φ S R IntgRing S