Step |
Hyp |
Ref |
Expression |
1 |
|
irngval.o |
|
2 |
|
irngval.u |
|
3 |
|
irngval.b |
|
4 |
|
irngval.0 |
|
5 |
|
elirng.r |
|
6 |
|
elirng.s |
|
7 |
|
irngss.1 |
|
8 |
|
simpl |
|
9 |
3
|
subrgss |
|
10 |
6 9
|
syl |
|
11 |
10
|
sselda |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
6
|
adantr |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
17 15 2 13 14
|
subrgvr1cl |
|
19 |
|
eqid |
|
20 |
|
simpr |
|
21 |
19 2 12 13 14 15 20
|
asclply1subcl |
|
22 |
12 2 13 14 15 16 18 21
|
ressply1sub |
|
23 |
12 2 13 14
|
subrgply1 |
|
24 |
|
subrgsubg |
|
25 |
6 23 24
|
3syl |
|
26 |
25
|
adantr |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
27 16 28
|
subgsub |
|
30 |
26 18 21 29
|
syl3anc |
|
31 |
22 30
|
eqtr4d |
|
32 |
2
|
subrgcrng |
|
33 |
5 6 32
|
syl2anc |
|
34 |
13
|
ply1crng |
|
35 |
33 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
36
|
crnggrpd |
|
38 |
|
eqid |
|
39 |
14 38
|
grpsubcl |
|
40 |
37 18 21 39
|
syl3anc |
|
41 |
31 40
|
eqeltrrd |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
7
|
adantr |
|
46 |
5
|
adantr |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
12 42 3 17 27 19 43 44 45 46 11 47 48 4
|
ply1remlem |
|
50 |
49
|
simp1d |
|
51 |
41 50
|
elind |
|
52 |
|
eqid |
|
53 |
12 2 13 14 6 47 52
|
ressply1mon1p |
|
54 |
53
|
adantr |
|
55 |
51 54
|
eleqtrrd |
|
56 |
|
fveq2 |
|
57 |
56
|
fveq1d |
|
58 |
57
|
eqeq1d |
|
59 |
58
|
adantl |
|
60 |
1 3 13 2 14 44 46 15
|
ressply1evl |
|
61 |
60
|
fveq1d |
|
62 |
41
|
fvresd |
|
63 |
61 62
|
eqtrd |
|
64 |
63
|
fveq1d |
|
65 |
|
eqid |
|
66 |
|
eqid |
|
67 |
3
|
fvexi |
|
68 |
67
|
a1i |
|
69 |
44 12 65 3
|
evl1rhm |
|
70 |
42 66
|
rhmf |
|
71 |
5 69 70
|
3syl |
|
72 |
71
|
adantr |
|
73 |
|
eqid |
|
74 |
|
eqid |
|
75 |
12 2 13 14 6 73 74 42
|
ressply1bas2 |
|
76 |
75
|
adantr |
|
77 |
41 76
|
eleqtrd |
|
78 |
77
|
elin2d |
|
79 |
72 78
|
ffvelcdmd |
|
80 |
65 3 66 45 68 79
|
pwselbas |
|
81 |
80
|
ffnd |
|
82 |
|
vsnid |
|
83 |
49
|
simp3d |
|
84 |
82 83
|
eleqtrrid |
|
85 |
|
fniniseg |
|
86 |
85
|
simplbda |
|
87 |
81 84 86
|
syl2anc |
|
88 |
64 87
|
eqtrd |
|
89 |
55 59 88
|
rspcedvd |
|
90 |
1 2 3 4 5 6
|
elirng |
|
91 |
90
|
biimpar |
|
92 |
8 11 89 91
|
syl12anc |
|
93 |
92
|
ex |
|
94 |
93
|
ssrdv |
|