Metamath Proof Explorer


Theorem irngss

Description: All elements of a subring S are integral over S . This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng ). (Contributed by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Hypotheses irngval.o O=RevalSub1S
irngval.u U=R𝑠S
irngval.b B=BaseR
irngval.0 0˙=0R
elirng.r φRCRing
elirng.s φSSubRingR
irngss.1 φRNzRing
Assertion irngss φSRIntgRingS

Proof

Step Hyp Ref Expression
1 irngval.o O=RevalSub1S
2 irngval.u U=R𝑠S
3 irngval.b B=BaseR
4 irngval.0 0˙=0R
5 elirng.r φRCRing
6 elirng.s φSSubRingR
7 irngss.1 φRNzRing
8 simpl φxSφ
9 3 subrgss SSubRingRSB
10 6 9 syl φSB
11 10 sselda φxSxB
12 eqid Poly1R=Poly1R
13 eqid Poly1U=Poly1U
14 eqid BasePoly1U=BasePoly1U
15 6 adantr φxSSSubRingR
16 eqid Poly1R𝑠BasePoly1U=Poly1R𝑠BasePoly1U
17 eqid var1R=var1R
18 17 15 2 13 14 subrgvr1cl φxSvar1RBasePoly1U
19 eqid algScPoly1R=algScPoly1R
20 simpr φxSxS
21 19 2 12 13 14 15 20 asclply1subcl φxSalgScPoly1RxBasePoly1U
22 12 2 13 14 15 16 18 21 ressply1sub φxSvar1R-Poly1UalgScPoly1Rx=var1R-Poly1R𝑠BasePoly1UalgScPoly1Rx
23 12 2 13 14 subrgply1 SSubRingRBasePoly1USubRingPoly1R
24 subrgsubg BasePoly1USubRingPoly1RBasePoly1USubGrpPoly1R
25 6 23 24 3syl φBasePoly1USubGrpPoly1R
26 25 adantr φxSBasePoly1USubGrpPoly1R
27 eqid -Poly1R=-Poly1R
28 eqid -Poly1R𝑠BasePoly1U=-Poly1R𝑠BasePoly1U
29 27 16 28 subgsub BasePoly1USubGrpPoly1Rvar1RBasePoly1UalgScPoly1RxBasePoly1Uvar1R-Poly1RalgScPoly1Rx=var1R-Poly1R𝑠BasePoly1UalgScPoly1Rx
30 26 18 21 29 syl3anc φxSvar1R-Poly1RalgScPoly1Rx=var1R-Poly1R𝑠BasePoly1UalgScPoly1Rx
31 22 30 eqtr4d φxSvar1R-Poly1UalgScPoly1Rx=var1R-Poly1RalgScPoly1Rx
32 2 subrgcrng RCRingSSubRingRUCRing
33 5 6 32 syl2anc φUCRing
34 13 ply1crng UCRingPoly1UCRing
35 33 34 syl φPoly1UCRing
36 35 adantr φxSPoly1UCRing
37 36 crnggrpd φxSPoly1UGrp
38 eqid -Poly1U=-Poly1U
39 14 38 grpsubcl Poly1UGrpvar1RBasePoly1UalgScPoly1RxBasePoly1Uvar1R-Poly1UalgScPoly1RxBasePoly1U
40 37 18 21 39 syl3anc φxSvar1R-Poly1UalgScPoly1RxBasePoly1U
41 31 40 eqeltrrd φxSvar1R-Poly1RalgScPoly1RxBasePoly1U
42 eqid BasePoly1R=BasePoly1R
43 eqid var1R-Poly1RalgScPoly1Rx=var1R-Poly1RalgScPoly1Rx
44 eqid eval1R=eval1R
45 7 adantr φxSRNzRing
46 5 adantr φxSRCRing
47 eqid Monic1pR=Monic1pR
48 eqid deg1R=deg1R
49 12 42 3 17 27 19 43 44 45 46 11 47 48 4 ply1remlem φxSvar1R-Poly1RalgScPoly1RxMonic1pRdeg1Rvar1R-Poly1RalgScPoly1Rx=1eval1Rvar1R-Poly1RalgScPoly1Rx-10˙=x
50 49 simp1d φxSvar1R-Poly1RalgScPoly1RxMonic1pR
51 41 50 elind φxSvar1R-Poly1RalgScPoly1RxBasePoly1UMonic1pR
52 eqid Monic1pU=Monic1pU
53 12 2 13 14 6 47 52 ressply1mon1p φMonic1pU=BasePoly1UMonic1pR
54 53 adantr φxSMonic1pU=BasePoly1UMonic1pR
55 51 54 eleqtrrd φxSvar1R-Poly1RalgScPoly1RxMonic1pU
56 fveq2 f=var1R-Poly1RalgScPoly1RxOf=Ovar1R-Poly1RalgScPoly1Rx
57 56 fveq1d f=var1R-Poly1RalgScPoly1RxOfx=Ovar1R-Poly1RalgScPoly1Rxx
58 57 eqeq1d f=var1R-Poly1RalgScPoly1RxOfx=0˙Ovar1R-Poly1RalgScPoly1Rxx=0˙
59 58 adantl φxSf=var1R-Poly1RalgScPoly1RxOfx=0˙Ovar1R-Poly1RalgScPoly1Rxx=0˙
60 1 3 13 2 14 44 46 15 ressply1evl φxSO=eval1RBasePoly1U
61 60 fveq1d φxSOvar1R-Poly1RalgScPoly1Rx=eval1RBasePoly1Uvar1R-Poly1RalgScPoly1Rx
62 41 fvresd φxSeval1RBasePoly1Uvar1R-Poly1RalgScPoly1Rx=eval1Rvar1R-Poly1RalgScPoly1Rx
63 61 62 eqtrd φxSOvar1R-Poly1RalgScPoly1Rx=eval1Rvar1R-Poly1RalgScPoly1Rx
64 63 fveq1d φxSOvar1R-Poly1RalgScPoly1Rxx=eval1Rvar1R-Poly1RalgScPoly1Rxx
65 eqid R𝑠B=R𝑠B
66 eqid BaseR𝑠B=BaseR𝑠B
67 3 fvexi BV
68 67 a1i φxSBV
69 44 12 65 3 evl1rhm RCRingeval1RPoly1RRingHomR𝑠B
70 42 66 rhmf eval1RPoly1RRingHomR𝑠Beval1R:BasePoly1RBaseR𝑠B
71 5 69 70 3syl φeval1R:BasePoly1RBaseR𝑠B
72 71 adantr φxSeval1R:BasePoly1RBaseR𝑠B
73 eqid PwSer1U=PwSer1U
74 eqid BasePwSer1U=BasePwSer1U
75 12 2 13 14 6 73 74 42 ressply1bas2 φBasePoly1U=BasePwSer1UBasePoly1R
76 75 adantr φxSBasePoly1U=BasePwSer1UBasePoly1R
77 41 76 eleqtrd φxSvar1R-Poly1RalgScPoly1RxBasePwSer1UBasePoly1R
78 77 elin2d φxSvar1R-Poly1RalgScPoly1RxBasePoly1R
79 72 78 ffvelcdmd φxSeval1Rvar1R-Poly1RalgScPoly1RxBaseR𝑠B
80 65 3 66 45 68 79 pwselbas φxSeval1Rvar1R-Poly1RalgScPoly1Rx:BB
81 80 ffnd φxSeval1Rvar1R-Poly1RalgScPoly1RxFnB
82 vsnid xx
83 49 simp3d φxSeval1Rvar1R-Poly1RalgScPoly1Rx-10˙=x
84 82 83 eleqtrrid φxSxeval1Rvar1R-Poly1RalgScPoly1Rx-10˙
85 fniniseg eval1Rvar1R-Poly1RalgScPoly1RxFnBxeval1Rvar1R-Poly1RalgScPoly1Rx-10˙xBeval1Rvar1R-Poly1RalgScPoly1Rxx=0˙
86 85 simplbda eval1Rvar1R-Poly1RalgScPoly1RxFnBxeval1Rvar1R-Poly1RalgScPoly1Rx-10˙eval1Rvar1R-Poly1RalgScPoly1Rxx=0˙
87 81 84 86 syl2anc φxSeval1Rvar1R-Poly1RalgScPoly1Rxx=0˙
88 64 87 eqtrd φxSOvar1R-Poly1RalgScPoly1Rxx=0˙
89 55 59 88 rspcedvd φxSfMonic1pUOfx=0˙
90 1 2 3 4 5 6 elirng φxRIntgRingSxBfMonic1pUOfx=0˙
91 90 biimpar φxBfMonic1pUOfx=0˙xRIntgRingS
92 8 11 89 91 syl12anc φxSxRIntgRingS
93 92 ex φxSxRIntgRingS
94 93 ssrdv φSRIntgRingS