| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngval.o |
|
| 2 |
|
irngval.u |
|
| 3 |
|
irngval.b |
|
| 4 |
|
irngval.0 |
|
| 5 |
|
elirng.r |
|
| 6 |
|
elirng.s |
|
| 7 |
|
irngss.1 |
|
| 8 |
|
simpl |
|
| 9 |
3
|
subrgss |
|
| 10 |
6 9
|
syl |
|
| 11 |
10
|
sselda |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
6
|
adantr |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
17 15 2 13 14
|
subrgvr1cl |
|
| 19 |
|
eqid |
|
| 20 |
|
simpr |
|
| 21 |
19 2 12 13 14 15 20
|
asclply1subcl |
|
| 22 |
12 2 13 14 15 16 18 21
|
ressply1sub |
|
| 23 |
12 2 13 14
|
subrgply1 |
|
| 24 |
|
subrgsubg |
|
| 25 |
6 23 24
|
3syl |
|
| 26 |
25
|
adantr |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
27 16 28
|
subgsub |
|
| 30 |
26 18 21 29
|
syl3anc |
|
| 31 |
22 30
|
eqtr4d |
|
| 32 |
2
|
subrgcrng |
|
| 33 |
5 6 32
|
syl2anc |
|
| 34 |
13
|
ply1crng |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
crnggrpd |
|
| 38 |
|
eqid |
|
| 39 |
14 38
|
grpsubcl |
|
| 40 |
37 18 21 39
|
syl3anc |
|
| 41 |
31 40
|
eqeltrrd |
|
| 42 |
|
eqid |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
7
|
adantr |
|
| 46 |
5
|
adantr |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
12 42 3 17 27 19 43 44 45 46 11 47 48 4
|
ply1remlem |
|
| 50 |
49
|
simp1d |
|
| 51 |
41 50
|
elind |
|
| 52 |
|
eqid |
|
| 53 |
12 2 13 14 6 47 52
|
ressply1mon1p |
|
| 54 |
53
|
adantr |
|
| 55 |
51 54
|
eleqtrrd |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
fveq1d |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
58
|
adantl |
|
| 60 |
1 3 13 2 14 44 46 15
|
ressply1evl |
|
| 61 |
60
|
fveq1d |
|
| 62 |
41
|
fvresd |
|
| 63 |
61 62
|
eqtrd |
|
| 64 |
63
|
fveq1d |
|
| 65 |
|
eqid |
|
| 66 |
|
eqid |
|
| 67 |
3
|
fvexi |
|
| 68 |
67
|
a1i |
|
| 69 |
44 12 65 3
|
evl1rhm |
|
| 70 |
42 66
|
rhmf |
|
| 71 |
5 69 70
|
3syl |
|
| 72 |
71
|
adantr |
|
| 73 |
|
eqid |
|
| 74 |
|
eqid |
|
| 75 |
12 2 13 14 6 73 74 42
|
ressply1bas2 |
|
| 76 |
75
|
adantr |
|
| 77 |
41 76
|
eleqtrd |
|
| 78 |
77
|
elin2d |
|
| 79 |
72 78
|
ffvelcdmd |
|
| 80 |
65 3 66 45 68 79
|
pwselbas |
|
| 81 |
80
|
ffnd |
|
| 82 |
|
vsnid |
|
| 83 |
49
|
simp3d |
|
| 84 |
82 83
|
eleqtrrid |
|
| 85 |
|
fniniseg |
|
| 86 |
85
|
simplbda |
|
| 87 |
81 84 86
|
syl2anc |
|
| 88 |
64 87
|
eqtrd |
|
| 89 |
55 59 88
|
rspcedvd |
|
| 90 |
1 2 3 4 5 6
|
elirng |
|
| 91 |
90
|
biimpar |
|
| 92 |
8 11 89 91
|
syl12anc |
|
| 93 |
92
|
ex |
|
| 94 |
93
|
ssrdv |
|