Metamath Proof Explorer


Definition df-irng

Description: Define the subring of elements of a ring r integral over a subset s . (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Assertion df-irng IntgRing=rV,sVfMonic1pr𝑠srevalSub1sf-10r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cirng classIntgRing
1 vr setvarr
2 cvv classV
3 vs setvars
4 vf setvarf
5 cmn1 classMonic1p
6 1 cv setvarr
7 cress class𝑠
8 3 cv setvars
9 6 8 7 co classr𝑠s
10 9 5 cfv classMonic1pr𝑠s
11 ces1 classevalSub1
12 6 8 11 co classrevalSub1s
13 4 cv setvarf
14 13 12 cfv classrevalSub1sf
15 14 ccnv classrevalSub1sf-1
16 c0g class0𝑔
17 6 16 cfv class0r
18 17 csn class0r
19 15 18 cima classrevalSub1sf-10r
20 4 10 19 ciun classfMonic1pr𝑠srevalSub1sf-10r
21 1 3 2 2 20 cmpo classrV,sVfMonic1pr𝑠srevalSub1sf-10r
22 0 21 wceq wffIntgRing=rV,sVfMonic1pr𝑠srevalSub1sf-10r