| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngval.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
| 2 |
|
irngval.u |
⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) |
| 3 |
|
irngval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
irngval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
elirng.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
elirng.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
irngss.1 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 8 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝜑 ) |
| 9 |
3
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |
| 10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 11 |
10
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( Poly1 ‘ 𝑈 ) = ( Poly1 ‘ 𝑈 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) = ( Base ‘ ( Poly1 ‘ 𝑈 ) ) |
| 15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( ( Poly1 ‘ 𝑅 ) ↾s ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) = ( ( Poly1 ‘ 𝑅 ) ↾s ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) |
| 17 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
| 18 |
17 15 2 13 14
|
subrgvr1cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) |
| 19 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 21 |
19 2 12 13 14 15 20
|
asclply1subcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) |
| 22 |
12 2 13 14 15 16 18 21
|
ressply1sub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑈 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( ( Poly1 ‘ 𝑅 ) ↾s ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) |
| 23 |
12 2 13 14
|
subrgply1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∈ ( SubRing ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 24 |
|
subrgsubg |
⊢ ( ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∈ ( SubRing ‘ ( Poly1 ‘ 𝑅 ) ) → ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∈ ( SubGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 25 |
6 23 24
|
3syl |
⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∈ ( SubGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∈ ( SubGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 27 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝑅 ) ) = ( -g ‘ ( Poly1 ‘ 𝑅 ) ) |
| 28 |
|
eqid |
⊢ ( -g ‘ ( ( Poly1 ‘ 𝑅 ) ↾s ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) ) = ( -g ‘ ( ( Poly1 ‘ 𝑅 ) ↾s ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) ) |
| 29 |
27 16 28
|
subgsub |
⊢ ( ( ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∈ ( SubGrp ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( ( Poly1 ‘ 𝑅 ) ↾s ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) |
| 30 |
26 18 21 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( ( Poly1 ‘ 𝑅 ) ↾s ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) |
| 31 |
22 30
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑈 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) |
| 32 |
2
|
subrgcrng |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑈 ∈ CRing ) |
| 33 |
5 6 32
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 34 |
13
|
ply1crng |
⊢ ( 𝑈 ∈ CRing → ( Poly1 ‘ 𝑈 ) ∈ CRing ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝑈 ) ∈ CRing ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Poly1 ‘ 𝑈 ) ∈ CRing ) |
| 37 |
36
|
crnggrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Poly1 ‘ 𝑈 ) ∈ Grp ) |
| 38 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝑈 ) ) = ( -g ‘ ( Poly1 ‘ 𝑈 ) ) |
| 39 |
14 38
|
grpsubcl |
⊢ ( ( ( Poly1 ‘ 𝑈 ) ∈ Grp ∧ ( var1 ‘ 𝑅 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑈 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) |
| 40 |
37 18 21 39
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑈 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) |
| 41 |
31 40
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) |
| 42 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 43 |
|
eqid |
⊢ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) |
| 44 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
| 45 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑅 ∈ NzRing ) |
| 46 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑅 ∈ CRing ) |
| 47 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
| 48 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 49 |
12 42 3 17 27 19 43 44 45 46 11 47 48 4
|
ply1remlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( Monic1p ‘ 𝑅 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) = 1 ∧ ( ◡ ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) “ { 0 } ) = { 𝑥 } ) ) |
| 50 |
49
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( Monic1p ‘ 𝑅 ) ) |
| 51 |
41 50
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∩ ( Monic1p ‘ 𝑅 ) ) ) |
| 52 |
|
eqid |
⊢ ( Monic1p ‘ 𝑈 ) = ( Monic1p ‘ 𝑈 ) |
| 53 |
12 2 13 14 6 47 52
|
ressply1mon1p |
⊢ ( 𝜑 → ( Monic1p ‘ 𝑈 ) = ( ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∩ ( Monic1p ‘ 𝑅 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Monic1p ‘ 𝑈 ) = ( ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ∩ ( Monic1p ‘ 𝑅 ) ) ) |
| 55 |
51 54
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( Monic1p ‘ 𝑈 ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑓 = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) → ( 𝑂 ‘ 𝑓 ) = ( 𝑂 ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ) |
| 57 |
56
|
fveq1d |
⊢ ( 𝑓 = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) → ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝑂 ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) ) |
| 58 |
57
|
eqeq1d |
⊢ ( 𝑓 = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) → ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑂 ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = 0 ) ) |
| 59 |
58
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑓 = ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) → ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑂 ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = 0 ) ) |
| 60 |
1 3 13 2 14 44 46 15
|
ressply1evl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) ) |
| 61 |
60
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑂 ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) = ( ( ( eval1 ‘ 𝑅 ) ↾ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ) |
| 62 |
41
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( eval1 ‘ 𝑅 ) ↾ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) = ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ) |
| 63 |
61 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑂 ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) = ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ) |
| 64 |
63
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑂 ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = ( ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) ) |
| 65 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
| 66 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
| 67 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
| 68 |
67
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ V ) |
| 69 |
44 12 65 3
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 70 |
42 66
|
rhmf |
⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 71 |
5 69 70
|
3syl |
⊢ ( 𝜑 → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 73 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) |
| 74 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) |
| 75 |
12 2 13 14 6 73 74 42
|
ressply1bas2 |
⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ 𝑈 ) ) = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Base ‘ ( Poly1 ‘ 𝑈 ) ) = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
| 77 |
41 76
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
| 78 |
77
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 79 |
72 78
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 80 |
65 3 66 45 68 79
|
pwselbas |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) : 𝐵 ⟶ 𝐵 ) |
| 81 |
80
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) Fn 𝐵 ) |
| 82 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
| 83 |
49
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ◡ ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) “ { 0 } ) = { 𝑥 } ) |
| 84 |
82 83
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( ◡ ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) “ { 0 } ) ) |
| 85 |
|
fniniseg |
⊢ ( ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) Fn 𝐵 → ( 𝑥 ∈ ( ◡ ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) “ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = 0 ) ) ) |
| 86 |
85
|
simplbda |
⊢ ( ( ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) Fn 𝐵 ∧ 𝑥 ∈ ( ◡ ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) “ { 0 } ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = 0 ) |
| 87 |
81 84 86
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( eval1 ‘ 𝑅 ) ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = 0 ) |
| 88 |
64 87
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑂 ‘ ( ( var1 ‘ 𝑅 ) ( -g ‘ ( Poly1 ‘ 𝑅 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑥 ) ) ) ‘ 𝑥 ) = 0 ) |
| 89 |
55 59 88
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 0 ) |
| 90 |
1 2 3 4 5 6
|
elirng |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 0 ) ) ) |
| 91 |
90
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑓 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ) |
| 92 |
8 11 89 91
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ) |
| 93 |
92
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ) ) |
| 94 |
93
|
ssrdv |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑅 IntgRing 𝑆 ) ) |