Step |
Hyp |
Ref |
Expression |
1 |
|
irngval.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
2 |
|
irngval.u |
⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) |
3 |
|
irngval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
irngval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
elirng.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
elirng.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
7 |
|
0ringirng.1 |
⊢ ( 𝜑 → ¬ 𝑅 ∈ NzRing ) |
8 |
|
rex0 |
⊢ ¬ ∃ 𝑝 ∈ ∅ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 |
9 |
|
eqid |
⊢ ( Monic1p ‘ 𝑈 ) = ( Monic1p ‘ 𝑈 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
11 |
2
|
subrgring |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ∈ Ring ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
13 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
14 |
3
|
fveq2i |
⊢ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( Base ‘ 𝑅 ) ) |
15 |
|
0ringnnzr |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) |
16 |
15
|
biimpar |
⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) |
17 |
13 7 16
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) |
18 |
14 17
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 ) |
19 |
3
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |
20 |
2 3
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝑈 ) ) |
21 |
6 19 20
|
3syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝑈 ) ) |
22 |
21 6
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ∈ ( SubRing ‘ 𝑅 ) ) |
23 |
3 13 18 22
|
0ringsubrg |
⊢ ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝑈 ) ) = 1 ) |
24 |
9 10 12 23
|
0ringmon1p |
⊢ ( 𝜑 → ( Monic1p ‘ 𝑈 ) = ∅ ) |
25 |
24
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ↔ ∃ 𝑝 ∈ ∅ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) |
26 |
8 25
|
mtbiri |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) |
27 |
1 2 3 4 5 6
|
elirng |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑝 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) ) |
28 |
27
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ) → ∃ 𝑝 ∈ ( Monic1p ‘ 𝑈 ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) |
29 |
26 28
|
mtand |
⊢ ( 𝜑 → ¬ 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ) |
30 |
29
|
eq0rdv |
⊢ ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) = ∅ ) |