Metamath Proof Explorer


Theorem 0ringirng

Description: A zero ring R has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses irngval.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
irngval.u 𝑈 = ( 𝑅s 𝑆 )
irngval.b 𝐵 = ( Base ‘ 𝑅 )
irngval.0 0 = ( 0g𝑅 )
elirng.r ( 𝜑𝑅 ∈ CRing )
elirng.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
0ringirng.1 ( 𝜑 → ¬ 𝑅 ∈ NzRing )
Assertion 0ringirng ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) = ∅ )

Proof

Step Hyp Ref Expression
1 irngval.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 irngval.u 𝑈 = ( 𝑅s 𝑆 )
3 irngval.b 𝐵 = ( Base ‘ 𝑅 )
4 irngval.0 0 = ( 0g𝑅 )
5 elirng.r ( 𝜑𝑅 ∈ CRing )
6 elirng.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
7 0ringirng.1 ( 𝜑 → ¬ 𝑅 ∈ NzRing )
8 rex0 ¬ ∃ 𝑝 ∈ ∅ ( ( 𝑂𝑝 ) ‘ 𝑥 ) = 0
9 eqid ( Monic1p𝑈 ) = ( Monic1p𝑈 )
10 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
11 2 subrgring ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ∈ Ring )
12 6 11 syl ( 𝜑𝑈 ∈ Ring )
13 5 crngringd ( 𝜑𝑅 ∈ Ring )
14 3 fveq2i ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( Base ‘ 𝑅 ) )
15 0ringnnzr ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) )
16 15 biimpar ( ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 )
17 13 7 16 syl2anc ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 )
18 14 17 eqtrid ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 )
19 3 subrgss ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆𝐵 )
20 2 3 ressbas2 ( 𝑆𝐵𝑆 = ( Base ‘ 𝑈 ) )
21 6 19 20 3syl ( 𝜑𝑆 = ( Base ‘ 𝑈 ) )
22 21 6 eqeltrrd ( 𝜑 → ( Base ‘ 𝑈 ) ∈ ( SubRing ‘ 𝑅 ) )
23 3 13 18 22 0ringsubrg ( 𝜑 → ( ♯ ‘ ( Base ‘ 𝑈 ) ) = 1 )
24 9 10 12 23 0ringmon1p ( 𝜑 → ( Monic1p𝑈 ) = ∅ )
25 24 rexeqdv ( 𝜑 → ( ∃ 𝑝 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑝 ) ‘ 𝑥 ) = 0 ↔ ∃ 𝑝 ∈ ∅ ( ( 𝑂𝑝 ) ‘ 𝑥 ) = 0 ) )
26 8 25 mtbiri ( 𝜑 → ¬ ∃ 𝑝 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑝 ) ‘ 𝑥 ) = 0 )
27 1 2 3 4 5 6 elirng ( 𝜑 → ( 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑝 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑝 ) ‘ 𝑥 ) = 0 ) ) )
28 27 simplbda ( ( 𝜑𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) ) → ∃ 𝑝 ∈ ( Monic1p𝑈 ) ( ( 𝑂𝑝 ) ‘ 𝑥 ) = 0 )
29 26 28 mtand ( 𝜑 → ¬ 𝑥 ∈ ( 𝑅 IntgRing 𝑆 ) )
30 29 eq0rdv ( 𝜑 → ( 𝑅 IntgRing 𝑆 ) = ∅ )