| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngval.o |
|- O = ( R evalSub1 S ) |
| 2 |
|
irngval.u |
|- U = ( R |`s S ) |
| 3 |
|
irngval.b |
|- B = ( Base ` R ) |
| 4 |
|
irngval.0 |
|- .0. = ( 0g ` R ) |
| 5 |
|
elirng.r |
|- ( ph -> R e. CRing ) |
| 6 |
|
elirng.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
| 7 |
|
0ringirng.1 |
|- ( ph -> -. R e. NzRing ) |
| 8 |
|
rex0 |
|- -. E. p e. (/) ( ( O ` p ) ` x ) = .0. |
| 9 |
|
eqid |
|- ( Monic1p ` U ) = ( Monic1p ` U ) |
| 10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 11 |
2
|
subrgring |
|- ( S e. ( SubRing ` R ) -> U e. Ring ) |
| 12 |
6 11
|
syl |
|- ( ph -> U e. Ring ) |
| 13 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
| 14 |
3
|
fveq2i |
|- ( # ` B ) = ( # ` ( Base ` R ) ) |
| 15 |
|
0ringnnzr |
|- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |
| 16 |
15
|
biimpar |
|- ( ( R e. Ring /\ -. R e. NzRing ) -> ( # ` ( Base ` R ) ) = 1 ) |
| 17 |
13 7 16
|
syl2anc |
|- ( ph -> ( # ` ( Base ` R ) ) = 1 ) |
| 18 |
14 17
|
eqtrid |
|- ( ph -> ( # ` B ) = 1 ) |
| 19 |
3
|
subrgss |
|- ( S e. ( SubRing ` R ) -> S C_ B ) |
| 20 |
2 3
|
ressbas2 |
|- ( S C_ B -> S = ( Base ` U ) ) |
| 21 |
6 19 20
|
3syl |
|- ( ph -> S = ( Base ` U ) ) |
| 22 |
21 6
|
eqeltrrd |
|- ( ph -> ( Base ` U ) e. ( SubRing ` R ) ) |
| 23 |
3 13 18 22
|
0ringsubrg |
|- ( ph -> ( # ` ( Base ` U ) ) = 1 ) |
| 24 |
9 10 12 23
|
0ringmon1p |
|- ( ph -> ( Monic1p ` U ) = (/) ) |
| 25 |
24
|
rexeqdv |
|- ( ph -> ( E. p e. ( Monic1p ` U ) ( ( O ` p ) ` x ) = .0. <-> E. p e. (/) ( ( O ` p ) ` x ) = .0. ) ) |
| 26 |
8 25
|
mtbiri |
|- ( ph -> -. E. p e. ( Monic1p ` U ) ( ( O ` p ) ` x ) = .0. ) |
| 27 |
1 2 3 4 5 6
|
elirng |
|- ( ph -> ( x e. ( R IntgRing S ) <-> ( x e. B /\ E. p e. ( Monic1p ` U ) ( ( O ` p ) ` x ) = .0. ) ) ) |
| 28 |
27
|
simplbda |
|- ( ( ph /\ x e. ( R IntgRing S ) ) -> E. p e. ( Monic1p ` U ) ( ( O ` p ) ` x ) = .0. ) |
| 29 |
26 28
|
mtand |
|- ( ph -> -. x e. ( R IntgRing S ) ) |
| 30 |
29
|
eq0rdv |
|- ( ph -> ( R IntgRing S ) = (/) ) |