Step |
Hyp |
Ref |
Expression |
1 |
|
irngval.o |
|- O = ( R evalSub1 S ) |
2 |
|
irngval.u |
|- U = ( R |`s S ) |
3 |
|
irngval.b |
|- B = ( Base ` R ) |
4 |
|
irngval.0 |
|- .0. = ( 0g ` R ) |
5 |
|
elirng.r |
|- ( ph -> R e. CRing ) |
6 |
|
elirng.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
7 |
|
0ringirng.1 |
|- ( ph -> -. R e. NzRing ) |
8 |
|
rex0 |
|- -. E. p e. (/) ( ( O ` p ) ` x ) = .0. |
9 |
|
eqid |
|- ( Monic1p ` U ) = ( Monic1p ` U ) |
10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
11 |
2
|
subrgring |
|- ( S e. ( SubRing ` R ) -> U e. Ring ) |
12 |
6 11
|
syl |
|- ( ph -> U e. Ring ) |
13 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
14 |
3
|
fveq2i |
|- ( # ` B ) = ( # ` ( Base ` R ) ) |
15 |
|
0ringnnzr |
|- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |
16 |
15
|
biimpar |
|- ( ( R e. Ring /\ -. R e. NzRing ) -> ( # ` ( Base ` R ) ) = 1 ) |
17 |
13 7 16
|
syl2anc |
|- ( ph -> ( # ` ( Base ` R ) ) = 1 ) |
18 |
14 17
|
eqtrid |
|- ( ph -> ( # ` B ) = 1 ) |
19 |
3
|
subrgss |
|- ( S e. ( SubRing ` R ) -> S C_ B ) |
20 |
2 3
|
ressbas2 |
|- ( S C_ B -> S = ( Base ` U ) ) |
21 |
6 19 20
|
3syl |
|- ( ph -> S = ( Base ` U ) ) |
22 |
21 6
|
eqeltrrd |
|- ( ph -> ( Base ` U ) e. ( SubRing ` R ) ) |
23 |
3 13 18 22
|
0ringsubrg |
|- ( ph -> ( # ` ( Base ` U ) ) = 1 ) |
24 |
9 10 12 23
|
0ringmon1p |
|- ( ph -> ( Monic1p ` U ) = (/) ) |
25 |
24
|
rexeqdv |
|- ( ph -> ( E. p e. ( Monic1p ` U ) ( ( O ` p ) ` x ) = .0. <-> E. p e. (/) ( ( O ` p ) ` x ) = .0. ) ) |
26 |
8 25
|
mtbiri |
|- ( ph -> -. E. p e. ( Monic1p ` U ) ( ( O ` p ) ` x ) = .0. ) |
27 |
1 2 3 4 5 6
|
elirng |
|- ( ph -> ( x e. ( R IntgRing S ) <-> ( x e. B /\ E. p e. ( Monic1p ` U ) ( ( O ` p ) ` x ) = .0. ) ) ) |
28 |
27
|
simplbda |
|- ( ( ph /\ x e. ( R IntgRing S ) ) -> E. p e. ( Monic1p ` U ) ( ( O ` p ) ` x ) = .0. ) |
29 |
26 28
|
mtand |
|- ( ph -> -. x e. ( R IntgRing S ) ) |
30 |
29
|
eq0rdv |
|- ( ph -> ( R IntgRing S ) = (/) ) |