| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngnzply1.o |
|- O = ( E evalSub1 F ) |
| 2 |
|
irngnzply1.z |
|- Z = ( 0g ` ( Poly1 ` E ) ) |
| 3 |
|
irngnzply1.1 |
|- .0. = ( 0g ` E ) |
| 4 |
|
irngnzply1.e |
|- ( ph -> E e. Field ) |
| 5 |
|
irngnzply1.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 6 |
|
irngnzply1lem.b |
|- B = ( Base ` E ) |
| 7 |
|
irngnzply1lem.1 |
|- ( ph -> P e. dom O ) |
| 8 |
|
irngnzply1lem.2 |
|- ( ph -> P =/= Z ) |
| 9 |
|
irngnzply1lem.3 |
|- ( ph -> ( ( O ` P ) ` X ) = .0. ) |
| 10 |
|
irngnzply1lem.x |
|- ( ph -> X e. B ) |
| 11 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
| 12 |
11
|
simp3bi |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
| 13 |
5 12
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
| 14 |
13
|
drngringd |
|- ( ph -> ( E |`s F ) e. Ring ) |
| 15 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
| 16 |
5 11
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
| 17 |
16
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 18 |
|
eqid |
|- ( E ^s B ) = ( E ^s B ) |
| 19 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
| 20 |
|
eqid |
|- ( Poly1 ` ( E |`s F ) ) = ( Poly1 ` ( E |`s F ) ) |
| 21 |
1 6 18 19 20
|
evls1rhm |
|- ( ( E e. CRing /\ F e. ( SubRing ` E ) ) -> O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s B ) ) ) |
| 22 |
15 17 21
|
syl2anc |
|- ( ph -> O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s B ) ) ) |
| 23 |
|
eqid |
|- ( Base ` ( Poly1 ` ( E |`s F ) ) ) = ( Base ` ( Poly1 ` ( E |`s F ) ) ) |
| 24 |
|
eqid |
|- ( Base ` ( E ^s B ) ) = ( Base ` ( E ^s B ) ) |
| 25 |
23 24
|
rhmf |
|- ( O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s B ) ) -> O : ( Base ` ( Poly1 ` ( E |`s F ) ) ) --> ( Base ` ( E ^s B ) ) ) |
| 26 |
22 25
|
syl |
|- ( ph -> O : ( Base ` ( Poly1 ` ( E |`s F ) ) ) --> ( Base ` ( E ^s B ) ) ) |
| 27 |
26
|
fdmd |
|- ( ph -> dom O = ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 28 |
7 27
|
eleqtrd |
|- ( ph -> P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 29 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
| 30 |
29 19 20 23 17 2
|
ressply10g |
|- ( ph -> Z = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 31 |
8 30
|
neeqtrd |
|- ( ph -> P =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 32 |
|
eqid |
|- ( 0g ` ( Poly1 ` ( E |`s F ) ) ) = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) |
| 33 |
|
eqid |
|- ( Unic1p ` ( E |`s F ) ) = ( Unic1p ` ( E |`s F ) ) |
| 34 |
20 23 32 33
|
drnguc1p |
|- ( ( ( E |`s F ) e. DivRing /\ P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) /\ P =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) -> P e. ( Unic1p ` ( E |`s F ) ) ) |
| 35 |
13 28 31 34
|
syl3anc |
|- ( ph -> P e. ( Unic1p ` ( E |`s F ) ) ) |
| 36 |
|
eqid |
|- ( Monic1p ` ( E |`s F ) ) = ( Monic1p ` ( E |`s F ) ) |
| 37 |
|
eqid |
|- ( .r ` ( Poly1 ` ( E |`s F ) ) ) = ( .r ` ( Poly1 ` ( E |`s F ) ) ) |
| 38 |
|
eqid |
|- ( algSc ` ( Poly1 ` ( E |`s F ) ) ) = ( algSc ` ( Poly1 ` ( E |`s F ) ) ) |
| 39 |
|
eqid |
|- ( deg1 ` ( E |`s F ) ) = ( deg1 ` ( E |`s F ) ) |
| 40 |
|
eqid |
|- ( invr ` ( E |`s F ) ) = ( invr ` ( E |`s F ) ) |
| 41 |
33 36 20 37 38 39 40
|
uc1pmon1p |
|- ( ( ( E |`s F ) e. Ring /\ P e. ( Unic1p ` ( E |`s F ) ) ) -> ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) e. ( Monic1p ` ( E |`s F ) ) ) |
| 42 |
14 35 41
|
syl2anc |
|- ( ph -> ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) e. ( Monic1p ` ( E |`s F ) ) ) |
| 43 |
|
simpr |
|- ( ( ph /\ p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) -> p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) |
| 44 |
43
|
fveq2d |
|- ( ( ph /\ p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) -> ( O ` p ) = ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ) |
| 45 |
44
|
fveq1d |
|- ( ( ph /\ p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) -> ( ( O ` p ) ` X ) = ( ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ` X ) ) |
| 46 |
45
|
eqeq1d |
|- ( ( ph /\ p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) -> ( ( ( O ` p ) ` X ) = .0. <-> ( ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ` X ) = .0. ) ) |
| 47 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
| 48 |
|
eqid |
|- ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) = ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) |
| 49 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
| 50 |
4 5 49
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
| 51 |
50
|
fldcrngd |
|- ( ph -> ( E |`s F ) e. CRing ) |
| 52 |
20
|
ply1assa |
|- ( ( E |`s F ) e. CRing -> ( Poly1 ` ( E |`s F ) ) e. AssAlg ) |
| 53 |
51 52
|
syl |
|- ( ph -> ( Poly1 ` ( E |`s F ) ) e. AssAlg ) |
| 54 |
|
assaring |
|- ( ( Poly1 ` ( E |`s F ) ) e. AssAlg -> ( Poly1 ` ( E |`s F ) ) e. Ring ) |
| 55 |
53 54
|
syl |
|- ( ph -> ( Poly1 ` ( E |`s F ) ) e. Ring ) |
| 56 |
20
|
ply1lmod |
|- ( ( E |`s F ) e. Ring -> ( Poly1 ` ( E |`s F ) ) e. LMod ) |
| 57 |
14 56
|
syl |
|- ( ph -> ( Poly1 ` ( E |`s F ) ) e. LMod ) |
| 58 |
|
eqid |
|- ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) = ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 59 |
38 48 55 57 58 23
|
asclf |
|- ( ph -> ( algSc ` ( Poly1 ` ( E |`s F ) ) ) : ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) --> ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 60 |
|
eqid |
|- ( Base ` ( E |`s F ) ) = ( Base ` ( E |`s F ) ) |
| 61 |
|
eqid |
|- ( 0g ` ( E |`s F ) ) = ( 0g ` ( E |`s F ) ) |
| 62 |
39 20 32 23
|
deg1nn0cl |
|- ( ( ( E |`s F ) e. Ring /\ P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) /\ P =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) -> ( ( deg1 ` ( E |`s F ) ) ` P ) e. NN0 ) |
| 63 |
14 28 31 62
|
syl3anc |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` P ) e. NN0 ) |
| 64 |
|
eqid |
|- ( coe1 ` P ) = ( coe1 ` P ) |
| 65 |
64 23 20 60
|
coe1fvalcl |
|- ( ( P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) /\ ( ( deg1 ` ( E |`s F ) ) ` P ) e. NN0 ) -> ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) e. ( Base ` ( E |`s F ) ) ) |
| 66 |
28 63 65
|
syl2anc |
|- ( ph -> ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) e. ( Base ` ( E |`s F ) ) ) |
| 67 |
39 20 32 23 61 64
|
deg1ldg |
|- ( ( ( E |`s F ) e. Ring /\ P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) /\ P =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) -> ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) =/= ( 0g ` ( E |`s F ) ) ) |
| 68 |
14 28 31 67
|
syl3anc |
|- ( ph -> ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) =/= ( 0g ` ( E |`s F ) ) ) |
| 69 |
60 61 40 13 66 68
|
drnginvrcld |
|- ( ph -> ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) e. ( Base ` ( E |`s F ) ) ) |
| 70 |
20
|
ply1sca |
|- ( ( E |`s F ) e. Field -> ( E |`s F ) = ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 71 |
50 70
|
syl |
|- ( ph -> ( E |`s F ) = ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 72 |
71
|
fveq2d |
|- ( ph -> ( Base ` ( E |`s F ) ) = ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) ) |
| 73 |
69 72
|
eleqtrd |
|- ( ph -> ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) e. ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) ) |
| 74 |
59 73
|
ffvelcdmd |
|- ( ph -> ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
| 75 |
1 6 20 19 23 37 47 15 17 74 28 10
|
evls1muld |
|- ( ph -> ( ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ` X ) = ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) ( ( O ` P ) ` X ) ) ) |
| 76 |
9
|
oveq2d |
|- ( ph -> ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) ( ( O ` P ) ` X ) ) = ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) .0. ) ) |
| 77 |
15
|
crngringd |
|- ( ph -> E e. Ring ) |
| 78 |
6
|
fvexi |
|- B e. _V |
| 79 |
78
|
a1i |
|- ( ph -> B e. _V ) |
| 80 |
26 74
|
ffvelcdmd |
|- ( ph -> ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) e. ( Base ` ( E ^s B ) ) ) |
| 81 |
18 6 24 4 79 80
|
pwselbas |
|- ( ph -> ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) : B --> B ) |
| 82 |
81 10
|
ffvelcdmd |
|- ( ph -> ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) e. B ) |
| 83 |
6 47 3
|
ringrz |
|- ( ( E e. Ring /\ ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) e. B ) -> ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) .0. ) = .0. ) |
| 84 |
77 82 83
|
syl2anc |
|- ( ph -> ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) .0. ) = .0. ) |
| 85 |
75 76 84
|
3eqtrd |
|- ( ph -> ( ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ` X ) = .0. ) |
| 86 |
42 46 85
|
rspcedvd |
|- ( ph -> E. p e. ( Monic1p ` ( E |`s F ) ) ( ( O ` p ) ` X ) = .0. ) |
| 87 |
1 19 6 3 15 17
|
elirng |
|- ( ph -> ( X e. ( E IntgRing F ) <-> ( X e. B /\ E. p e. ( Monic1p ` ( E |`s F ) ) ( ( O ` p ) ` X ) = .0. ) ) ) |
| 88 |
10 86 87
|
mpbir2and |
|- ( ph -> X e. ( E IntgRing F ) ) |