Step |
Hyp |
Ref |
Expression |
1 |
|
irngnzply1.o |
|- O = ( E evalSub1 F ) |
2 |
|
irngnzply1.z |
|- Z = ( 0g ` ( Poly1 ` E ) ) |
3 |
|
irngnzply1.1 |
|- .0. = ( 0g ` E ) |
4 |
|
irngnzply1.e |
|- ( ph -> E e. Field ) |
5 |
|
irngnzply1.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
irngnzply1lem.b |
|- B = ( Base ` E ) |
7 |
|
irngnzply1lem.1 |
|- ( ph -> P e. dom O ) |
8 |
|
irngnzply1lem.2 |
|- ( ph -> P =/= Z ) |
9 |
|
irngnzply1lem.3 |
|- ( ph -> ( ( O ` P ) ` X ) = .0. ) |
10 |
|
irngnzply1lem.x |
|- ( ph -> X e. B ) |
11 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
12 |
11
|
simp3bi |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
13 |
5 12
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
14 |
13
|
drngringd |
|- ( ph -> ( E |`s F ) e. Ring ) |
15 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
16 |
5 11
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
17 |
16
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
18 |
|
eqid |
|- ( E ^s B ) = ( E ^s B ) |
19 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
20 |
|
eqid |
|- ( Poly1 ` ( E |`s F ) ) = ( Poly1 ` ( E |`s F ) ) |
21 |
1 6 18 19 20
|
evls1rhm |
|- ( ( E e. CRing /\ F e. ( SubRing ` E ) ) -> O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s B ) ) ) |
22 |
15 17 21
|
syl2anc |
|- ( ph -> O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s B ) ) ) |
23 |
|
eqid |
|- ( Base ` ( Poly1 ` ( E |`s F ) ) ) = ( Base ` ( Poly1 ` ( E |`s F ) ) ) |
24 |
|
eqid |
|- ( Base ` ( E ^s B ) ) = ( Base ` ( E ^s B ) ) |
25 |
23 24
|
rhmf |
|- ( O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s B ) ) -> O : ( Base ` ( Poly1 ` ( E |`s F ) ) ) --> ( Base ` ( E ^s B ) ) ) |
26 |
22 25
|
syl |
|- ( ph -> O : ( Base ` ( Poly1 ` ( E |`s F ) ) ) --> ( Base ` ( E ^s B ) ) ) |
27 |
26
|
fdmd |
|- ( ph -> dom O = ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
28 |
7 27
|
eleqtrd |
|- ( ph -> P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
29 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
30 |
29 19 20 23 17 2
|
ressply10g |
|- ( ph -> Z = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
31 |
8 30
|
neeqtrd |
|- ( ph -> P =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
32 |
|
eqid |
|- ( 0g ` ( Poly1 ` ( E |`s F ) ) ) = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) |
33 |
|
eqid |
|- ( Unic1p ` ( E |`s F ) ) = ( Unic1p ` ( E |`s F ) ) |
34 |
20 23 32 33
|
drnguc1p |
|- ( ( ( E |`s F ) e. DivRing /\ P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) /\ P =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) -> P e. ( Unic1p ` ( E |`s F ) ) ) |
35 |
13 28 31 34
|
syl3anc |
|- ( ph -> P e. ( Unic1p ` ( E |`s F ) ) ) |
36 |
|
eqid |
|- ( Monic1p ` ( E |`s F ) ) = ( Monic1p ` ( E |`s F ) ) |
37 |
|
eqid |
|- ( .r ` ( Poly1 ` ( E |`s F ) ) ) = ( .r ` ( Poly1 ` ( E |`s F ) ) ) |
38 |
|
eqid |
|- ( algSc ` ( Poly1 ` ( E |`s F ) ) ) = ( algSc ` ( Poly1 ` ( E |`s F ) ) ) |
39 |
|
eqid |
|- ( deg1 ` ( E |`s F ) ) = ( deg1 ` ( E |`s F ) ) |
40 |
|
eqid |
|- ( invr ` ( E |`s F ) ) = ( invr ` ( E |`s F ) ) |
41 |
33 36 20 37 38 39 40
|
uc1pmon1p |
|- ( ( ( E |`s F ) e. Ring /\ P e. ( Unic1p ` ( E |`s F ) ) ) -> ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) e. ( Monic1p ` ( E |`s F ) ) ) |
42 |
14 35 41
|
syl2anc |
|- ( ph -> ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) e. ( Monic1p ` ( E |`s F ) ) ) |
43 |
|
simpr |
|- ( ( ph /\ p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) -> p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) |
44 |
43
|
fveq2d |
|- ( ( ph /\ p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) -> ( O ` p ) = ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ) |
45 |
44
|
fveq1d |
|- ( ( ph /\ p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) -> ( ( O ` p ) ` X ) = ( ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ` X ) ) |
46 |
45
|
eqeq1d |
|- ( ( ph /\ p = ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) -> ( ( ( O ` p ) ` X ) = .0. <-> ( ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ` X ) = .0. ) ) |
47 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
48 |
|
eqid |
|- ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) = ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) |
49 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
50 |
4 5 49
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
51 |
50
|
fldcrngd |
|- ( ph -> ( E |`s F ) e. CRing ) |
52 |
20
|
ply1assa |
|- ( ( E |`s F ) e. CRing -> ( Poly1 ` ( E |`s F ) ) e. AssAlg ) |
53 |
51 52
|
syl |
|- ( ph -> ( Poly1 ` ( E |`s F ) ) e. AssAlg ) |
54 |
|
assaring |
|- ( ( Poly1 ` ( E |`s F ) ) e. AssAlg -> ( Poly1 ` ( E |`s F ) ) e. Ring ) |
55 |
53 54
|
syl |
|- ( ph -> ( Poly1 ` ( E |`s F ) ) e. Ring ) |
56 |
20
|
ply1lmod |
|- ( ( E |`s F ) e. Ring -> ( Poly1 ` ( E |`s F ) ) e. LMod ) |
57 |
14 56
|
syl |
|- ( ph -> ( Poly1 ` ( E |`s F ) ) e. LMod ) |
58 |
|
eqid |
|- ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) = ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) |
59 |
38 48 55 57 58 23
|
asclf |
|- ( ph -> ( algSc ` ( Poly1 ` ( E |`s F ) ) ) : ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) --> ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
60 |
|
eqid |
|- ( Base ` ( E |`s F ) ) = ( Base ` ( E |`s F ) ) |
61 |
|
eqid |
|- ( 0g ` ( E |`s F ) ) = ( 0g ` ( E |`s F ) ) |
62 |
39 20 32 23
|
deg1nn0cl |
|- ( ( ( E |`s F ) e. Ring /\ P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) /\ P =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) -> ( ( deg1 ` ( E |`s F ) ) ` P ) e. NN0 ) |
63 |
14 28 31 62
|
syl3anc |
|- ( ph -> ( ( deg1 ` ( E |`s F ) ) ` P ) e. NN0 ) |
64 |
|
eqid |
|- ( coe1 ` P ) = ( coe1 ` P ) |
65 |
64 23 20 60
|
coe1fvalcl |
|- ( ( P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) /\ ( ( deg1 ` ( E |`s F ) ) ` P ) e. NN0 ) -> ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) e. ( Base ` ( E |`s F ) ) ) |
66 |
28 63 65
|
syl2anc |
|- ( ph -> ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) e. ( Base ` ( E |`s F ) ) ) |
67 |
39 20 32 23 61 64
|
deg1ldg |
|- ( ( ( E |`s F ) e. Ring /\ P e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) /\ P =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) -> ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) =/= ( 0g ` ( E |`s F ) ) ) |
68 |
14 28 31 67
|
syl3anc |
|- ( ph -> ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) =/= ( 0g ` ( E |`s F ) ) ) |
69 |
60 61 40 13 66 68
|
drnginvrcld |
|- ( ph -> ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) e. ( Base ` ( E |`s F ) ) ) |
70 |
20
|
ply1sca |
|- ( ( E |`s F ) e. Field -> ( E |`s F ) = ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) |
71 |
50 70
|
syl |
|- ( ph -> ( E |`s F ) = ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) |
72 |
71
|
fveq2d |
|- ( ph -> ( Base ` ( E |`s F ) ) = ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) ) |
73 |
69 72
|
eleqtrd |
|- ( ph -> ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) e. ( Base ` ( Scalar ` ( Poly1 ` ( E |`s F ) ) ) ) ) |
74 |
59 73
|
ffvelcdmd |
|- ( ph -> ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
75 |
1 6 20 19 23 37 47 15 17 74 28 10
|
evls1muld |
|- ( ph -> ( ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ` X ) = ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) ( ( O ` P ) ` X ) ) ) |
76 |
9
|
oveq2d |
|- ( ph -> ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) ( ( O ` P ) ` X ) ) = ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) .0. ) ) |
77 |
15
|
crngringd |
|- ( ph -> E e. Ring ) |
78 |
6
|
fvexi |
|- B e. _V |
79 |
78
|
a1i |
|- ( ph -> B e. _V ) |
80 |
26 74
|
ffvelcdmd |
|- ( ph -> ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) e. ( Base ` ( E ^s B ) ) ) |
81 |
18 6 24 4 79 80
|
pwselbas |
|- ( ph -> ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) : B --> B ) |
82 |
81 10
|
ffvelcdmd |
|- ( ph -> ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) e. B ) |
83 |
6 47 3
|
ringrz |
|- ( ( E e. Ring /\ ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) e. B ) -> ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) .0. ) = .0. ) |
84 |
77 82 83
|
syl2anc |
|- ( ph -> ( ( ( O ` ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ) ` X ) ( .r ` E ) .0. ) = .0. ) |
85 |
75 76 84
|
3eqtrd |
|- ( ph -> ( ( O ` ( ( ( algSc ` ( Poly1 ` ( E |`s F ) ) ) ` ( ( invr ` ( E |`s F ) ) ` ( ( coe1 ` P ) ` ( ( deg1 ` ( E |`s F ) ) ` P ) ) ) ) ( .r ` ( Poly1 ` ( E |`s F ) ) ) P ) ) ` X ) = .0. ) |
86 |
42 46 85
|
rspcedvd |
|- ( ph -> E. p e. ( Monic1p ` ( E |`s F ) ) ( ( O ` p ) ` X ) = .0. ) |
87 |
1 19 6 3 15 17
|
elirng |
|- ( ph -> ( X e. ( E IntgRing F ) <-> ( X e. B /\ E. p e. ( Monic1p ` ( E |`s F ) ) ( ( O ` p ) ` X ) = .0. ) ) ) |
88 |
10 86 87
|
mpbir2and |
|- ( ph -> X e. ( E IntgRing F ) ) |