Step |
Hyp |
Ref |
Expression |
1 |
|
irngnzply1.o |
|- O = ( E evalSub1 F ) |
2 |
|
irngnzply1.z |
|- Z = ( 0g ` ( Poly1 ` E ) ) |
3 |
|
irngnzply1.1 |
|- .0. = ( 0g ` E ) |
4 |
|
irngnzply1.e |
|- ( ph -> E e. Field ) |
5 |
|
irngnzply1.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
7 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
8 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
9 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
10 |
5 9
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
11 |
10
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
12 |
1 6 7 3 8 11
|
elirng |
|- ( ph -> ( x e. ( E IntgRing F ) <-> ( x e. ( Base ` E ) /\ E. p e. ( Monic1p ` ( E |`s F ) ) ( ( O ` p ) ` x ) = .0. ) ) ) |
13 |
12
|
biimpa |
|- ( ( ph /\ x e. ( E IntgRing F ) ) -> ( x e. ( Base ` E ) /\ E. p e. ( Monic1p ` ( E |`s F ) ) ( ( O ` p ) ` x ) = .0. ) ) |
14 |
13
|
simprd |
|- ( ( ph /\ x e. ( E IntgRing F ) ) -> E. p e. ( Monic1p ` ( E |`s F ) ) ( ( O ` p ) ` x ) = .0. ) |
15 |
|
eqid |
|- ( Poly1 ` ( E |`s F ) ) = ( Poly1 ` ( E |`s F ) ) |
16 |
|
eqid |
|- ( Base ` ( Poly1 ` ( E |`s F ) ) ) = ( Base ` ( Poly1 ` ( E |`s F ) ) ) |
17 |
|
eqid |
|- ( Monic1p ` ( E |`s F ) ) = ( Monic1p ` ( E |`s F ) ) |
18 |
15 16 17
|
mon1pcl |
|- ( p e. ( Monic1p ` ( E |`s F ) ) -> p e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ p e. ( Monic1p ` ( E |`s F ) ) ) -> p e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
20 |
|
eqid |
|- ( E ^s ( Base ` E ) ) = ( E ^s ( Base ` E ) ) |
21 |
1 7 20 6 15
|
evls1rhm |
|- ( ( E e. CRing /\ F e. ( SubRing ` E ) ) -> O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s ( Base ` E ) ) ) ) |
22 |
8 11 21
|
syl2anc |
|- ( ph -> O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s ( Base ` E ) ) ) ) |
23 |
|
eqid |
|- ( Base ` ( E ^s ( Base ` E ) ) ) = ( Base ` ( E ^s ( Base ` E ) ) ) |
24 |
16 23
|
rhmf |
|- ( O e. ( ( Poly1 ` ( E |`s F ) ) RingHom ( E ^s ( Base ` E ) ) ) -> O : ( Base ` ( Poly1 ` ( E |`s F ) ) ) --> ( Base ` ( E ^s ( Base ` E ) ) ) ) |
25 |
22 24
|
syl |
|- ( ph -> O : ( Base ` ( Poly1 ` ( E |`s F ) ) ) --> ( Base ` ( E ^s ( Base ` E ) ) ) ) |
26 |
25
|
fdmd |
|- ( ph -> dom O = ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ p e. ( Monic1p ` ( E |`s F ) ) ) -> dom O = ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
28 |
19 27
|
eleqtrrd |
|- ( ( ph /\ p e. ( Monic1p ` ( E |`s F ) ) ) -> p e. dom O ) |
29 |
|
eqid |
|- ( 0g ` ( Poly1 ` ( E |`s F ) ) ) = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) |
30 |
15 29 17
|
mon1pn0 |
|- ( p e. ( Monic1p ` ( E |`s F ) ) -> p =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
31 |
30
|
adantl |
|- ( ( ph /\ p e. ( Monic1p ` ( E |`s F ) ) ) -> p =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
32 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
33 |
32 6 15 16 11 2
|
ressply10g |
|- ( ph -> Z = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ p e. ( Monic1p ` ( E |`s F ) ) ) -> Z = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
35 |
31 34
|
neeqtrrd |
|- ( ( ph /\ p e. ( Monic1p ` ( E |`s F ) ) ) -> p =/= Z ) |
36 |
|
eldifsn |
|- ( p e. ( dom O \ { Z } ) <-> ( p e. dom O /\ p =/= Z ) ) |
37 |
28 35 36
|
sylanbrc |
|- ( ( ph /\ p e. ( Monic1p ` ( E |`s F ) ) ) -> p e. ( dom O \ { Z } ) ) |
38 |
37
|
ad2ant2r |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> p e. ( dom O \ { Z } ) ) |
39 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> E e. Field ) |
40 |
|
fvexd |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> ( Base ` E ) e. _V ) |
41 |
25
|
ad2antrr |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> O : ( Base ` ( Poly1 ` ( E |`s F ) ) ) --> ( Base ` ( E ^s ( Base ` E ) ) ) ) |
42 |
18
|
ad2antrl |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> p e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
43 |
41 42
|
ffvelcdmd |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> ( O ` p ) e. ( Base ` ( E ^s ( Base ` E ) ) ) ) |
44 |
20 7 23 39 40 43
|
pwselbas |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> ( O ` p ) : ( Base ` E ) --> ( Base ` E ) ) |
45 |
44
|
ffnd |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> ( O ` p ) Fn ( Base ` E ) ) |
46 |
13
|
simpld |
|- ( ( ph /\ x e. ( E IntgRing F ) ) -> x e. ( Base ` E ) ) |
47 |
46
|
adantr |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> x e. ( Base ` E ) ) |
48 |
|
simprr |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> ( ( O ` p ) ` x ) = .0. ) |
49 |
|
fniniseg |
|- ( ( O ` p ) Fn ( Base ` E ) -> ( x e. ( `' ( O ` p ) " { .0. } ) <-> ( x e. ( Base ` E ) /\ ( ( O ` p ) ` x ) = .0. ) ) ) |
50 |
49
|
biimpar |
|- ( ( ( O ` p ) Fn ( Base ` E ) /\ ( x e. ( Base ` E ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> x e. ( `' ( O ` p ) " { .0. } ) ) |
51 |
45 47 48 50
|
syl12anc |
|- ( ( ( ph /\ x e. ( E IntgRing F ) ) /\ ( p e. ( Monic1p ` ( E |`s F ) ) /\ ( ( O ` p ) ` x ) = .0. ) ) -> x e. ( `' ( O ` p ) " { .0. } ) ) |
52 |
14 38 51
|
reximssdv |
|- ( ( ph /\ x e. ( E IntgRing F ) ) -> E. p e. ( dom O \ { Z } ) x e. ( `' ( O ` p ) " { .0. } ) ) |
53 |
|
eliun |
|- ( x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) <-> E. p e. ( dom O \ { Z } ) x e. ( `' ( O ` p ) " { .0. } ) ) |
54 |
52 53
|
sylibr |
|- ( ( ph /\ x e. ( E IntgRing F ) ) -> x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) |
55 |
|
nfv |
|- F/ p ph |
56 |
|
nfiu1 |
|- F/_ p U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) |
57 |
56
|
nfcri |
|- F/ p x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) |
58 |
55 57
|
nfan |
|- F/ p ( ph /\ x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) |
59 |
4
|
ad2antrr |
|- ( ( ( ph /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> E e. Field ) |
60 |
5
|
ad2antrr |
|- ( ( ( ph /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> F e. ( SubDRing ` E ) ) |
61 |
|
eldifi |
|- ( p e. ( dom O \ { Z } ) -> p e. dom O ) |
62 |
61
|
adantl |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> p e. dom O ) |
63 |
62
|
adantr |
|- ( ( ( ph /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> p e. dom O ) |
64 |
|
eldifsni |
|- ( p e. ( dom O \ { Z } ) -> p =/= Z ) |
65 |
64
|
adantl |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> p =/= Z ) |
66 |
65
|
adantr |
|- ( ( ( ph /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> p =/= Z ) |
67 |
4
|
adantr |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> E e. Field ) |
68 |
|
fvexd |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> ( Base ` E ) e. _V ) |
69 |
25
|
adantr |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> O : ( Base ` ( Poly1 ` ( E |`s F ) ) ) --> ( Base ` ( E ^s ( Base ` E ) ) ) ) |
70 |
26
|
adantr |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> dom O = ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
71 |
62 70
|
eleqtrd |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> p e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
72 |
69 71
|
ffvelcdmd |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> ( O ` p ) e. ( Base ` ( E ^s ( Base ` E ) ) ) ) |
73 |
20 7 23 67 68 72
|
pwselbas |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> ( O ` p ) : ( Base ` E ) --> ( Base ` E ) ) |
74 |
73
|
ffnd |
|- ( ( ph /\ p e. ( dom O \ { Z } ) ) -> ( O ` p ) Fn ( Base ` E ) ) |
75 |
49
|
biimpa |
|- ( ( ( O ` p ) Fn ( Base ` E ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> ( x e. ( Base ` E ) /\ ( ( O ` p ) ` x ) = .0. ) ) |
76 |
74 75
|
sylan |
|- ( ( ( ph /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> ( x e. ( Base ` E ) /\ ( ( O ` p ) ` x ) = .0. ) ) |
77 |
76
|
simprd |
|- ( ( ( ph /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> ( ( O ` p ) ` x ) = .0. ) |
78 |
76
|
simpld |
|- ( ( ( ph /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> x e. ( Base ` E ) ) |
79 |
1 2 3 59 60 7 63 66 77 78
|
irngnzply1lem |
|- ( ( ( ph /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> x e. ( E IntgRing F ) ) |
80 |
79
|
adantllr |
|- ( ( ( ( ph /\ x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) /\ p e. ( dom O \ { Z } ) ) /\ x e. ( `' ( O ` p ) " { .0. } ) ) -> x e. ( E IntgRing F ) ) |
81 |
53
|
biimpi |
|- ( x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) -> E. p e. ( dom O \ { Z } ) x e. ( `' ( O ` p ) " { .0. } ) ) |
82 |
81
|
adantl |
|- ( ( ph /\ x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) -> E. p e. ( dom O \ { Z } ) x e. ( `' ( O ` p ) " { .0. } ) ) |
83 |
58 80 82
|
r19.29af |
|- ( ( ph /\ x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) -> x e. ( E IntgRing F ) ) |
84 |
54 83
|
impbida |
|- ( ph -> ( x e. ( E IntgRing F ) <-> x e. U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) ) |
85 |
84
|
eqrdv |
|- ( ph -> ( E IntgRing F ) = U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) |