| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngnzply1.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
| 2 |
|
irngnzply1.z |
⊢ 𝑍 = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 3 |
|
irngnzply1.1 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
| 4 |
|
irngnzply1.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 5 |
|
irngnzply1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 6 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 8 |
4
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 9 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
| 10 |
5 9
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
| 11 |
10
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 12 |
1 6 7 3 8 11
|
elirng |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ ∃ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) ) |
| 13 |
12
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ ∃ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) |
| 14 |
13
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) → ∃ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) |
| 15 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 17 |
|
eqid |
⊢ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 18 |
15 16 17
|
mon1pcl |
⊢ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 20 |
|
eqid |
⊢ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) = ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) |
| 21 |
1 7 20 6 15
|
evls1rhm |
⊢ ( ( 𝐸 ∈ CRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) → 𝑂 ∈ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) RingHom ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) ) |
| 22 |
8 11 21
|
syl2anc |
⊢ ( 𝜑 → 𝑂 ∈ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) RingHom ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) = ( Base ‘ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) |
| 24 |
16 23
|
rhmf |
⊢ ( 𝑂 ∈ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) RingHom ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) → 𝑂 : ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ⟶ ( Base ‘ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) ) |
| 25 |
22 24
|
syl |
⊢ ( 𝜑 → 𝑂 : ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ⟶ ( Base ‘ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) ) |
| 26 |
25
|
fdmd |
⊢ ( 𝜑 → dom 𝑂 = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → dom 𝑂 = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 28 |
19 27
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → 𝑝 ∈ dom 𝑂 ) |
| 29 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 30 |
15 29 17
|
mon1pn0 |
⊢ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) → 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 32 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 33 |
32 6 15 16 11 2
|
ressply10g |
⊢ ( 𝜑 → 𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → 𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 35 |
31 34
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → 𝑝 ≠ 𝑍 ) |
| 36 |
|
eldifsn |
⊢ ( 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ↔ ( 𝑝 ∈ dom 𝑂 ∧ 𝑝 ≠ 𝑍 ) ) |
| 37 |
28 35 36
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) |
| 38 |
37
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) |
| 39 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → 𝐸 ∈ Field ) |
| 40 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → ( Base ‘ 𝐸 ) ∈ V ) |
| 41 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → 𝑂 : ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ⟶ ( Base ‘ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) ) |
| 42 |
18
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 43 |
41 42
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → ( 𝑂 ‘ 𝑝 ) ∈ ( Base ‘ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) ) |
| 44 |
20 7 23 39 40 43
|
pwselbas |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → ( 𝑂 ‘ 𝑝 ) : ( Base ‘ 𝐸 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 45 |
44
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → ( 𝑂 ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) ) |
| 46 |
13
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
| 48 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) |
| 49 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) → ( 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) ) |
| 50 |
49
|
biimpar |
⊢ ( ( ( 𝑂 ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |
| 51 |
45 47 48 50
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) ∧ ( 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |
| 52 |
14 38 51
|
reximssdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) → ∃ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |
| 53 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ↔ ∃ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |
| 54 |
52 53
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) → 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |
| 55 |
|
nfv |
⊢ Ⅎ 𝑝 𝜑 |
| 56 |
|
nfiu1 |
⊢ Ⅎ 𝑝 ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) |
| 57 |
56
|
nfcri |
⊢ Ⅎ 𝑝 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) |
| 58 |
55 57
|
nfan |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |
| 59 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → 𝐸 ∈ Field ) |
| 60 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 61 |
|
eldifi |
⊢ ( 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) → 𝑝 ∈ dom 𝑂 ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → 𝑝 ∈ dom 𝑂 ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → 𝑝 ∈ dom 𝑂 ) |
| 64 |
|
eldifsni |
⊢ ( 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) → 𝑝 ≠ 𝑍 ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → 𝑝 ≠ 𝑍 ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → 𝑝 ≠ 𝑍 ) |
| 67 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → 𝐸 ∈ Field ) |
| 68 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → ( Base ‘ 𝐸 ) ∈ V ) |
| 69 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → 𝑂 : ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ⟶ ( Base ‘ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) ) |
| 70 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → dom 𝑂 = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 71 |
62 70
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 72 |
69 71
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → ( 𝑂 ‘ 𝑝 ) ∈ ( Base ‘ ( 𝐸 ↑s ( Base ‘ 𝐸 ) ) ) ) |
| 73 |
20 7 23 67 68 72
|
pwselbas |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → ( 𝑂 ‘ 𝑝 ) : ( Base ‘ 𝐸 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 74 |
73
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) → ( 𝑂 ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) ) |
| 75 |
49
|
biimpa |
⊢ ( ( ( 𝑂 ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → ( 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) |
| 76 |
74 75
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → ( 𝑥 ∈ ( Base ‘ 𝐸 ) ∧ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) ) |
| 77 |
76
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑥 ) = 0 ) |
| 78 |
76
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
| 79 |
1 2 3 59 60 7 63 66 77 78
|
irngnzply1lem |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 80 |
79
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) ∧ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ) ∧ 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 81 |
53
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) → ∃ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → ∃ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) 𝑥 ∈ ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |
| 83 |
58 80 82
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) → 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 84 |
54 83
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ↔ 𝑥 ∈ ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) ) |
| 85 |
84
|
eqrdv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) = ∪ 𝑝 ∈ ( dom 𝑂 ∖ { 𝑍 } ) ( ◡ ( 𝑂 ‘ 𝑝 ) “ { 0 } ) ) |