Step |
Hyp |
Ref |
Expression |
1 |
|
irngnzply1.o |
|
2 |
|
irngnzply1.z |
|
3 |
|
irngnzply1.1 |
|
4 |
|
irngnzply1.e |
|
5 |
|
irngnzply1.f |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
4
|
fldcrngd |
|
9 |
|
issdrg |
|
10 |
5 9
|
sylib |
|
11 |
10
|
simp2d |
|
12 |
1 6 7 3 8 11
|
elirng |
|
13 |
12
|
biimpa |
|
14 |
13
|
simprd |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
15 16 17
|
mon1pcl |
|
19 |
18
|
adantl |
|
20 |
|
eqid |
|
21 |
1 7 20 6 15
|
evls1rhm |
|
22 |
8 11 21
|
syl2anc |
|
23 |
|
eqid |
|
24 |
16 23
|
rhmf |
|
25 |
22 24
|
syl |
|
26 |
25
|
fdmd |
|
27 |
26
|
adantr |
|
28 |
19 27
|
eleqtrrd |
|
29 |
|
eqid |
|
30 |
15 29 17
|
mon1pn0 |
|
31 |
30
|
adantl |
|
32 |
|
eqid |
|
33 |
32 6 15 16 11 2
|
ressply10g |
|
34 |
33
|
adantr |
|
35 |
31 34
|
neeqtrrd |
|
36 |
|
eldifsn |
|
37 |
28 35 36
|
sylanbrc |
|
38 |
37
|
ad2ant2r |
|
39 |
4
|
ad2antrr |
|
40 |
|
fvexd |
|
41 |
25
|
ad2antrr |
|
42 |
18
|
ad2antrl |
|
43 |
41 42
|
ffvelcdmd |
|
44 |
20 7 23 39 40 43
|
pwselbas |
|
45 |
44
|
ffnd |
|
46 |
13
|
simpld |
|
47 |
46
|
adantr |
|
48 |
|
simprr |
|
49 |
|
fniniseg |
|
50 |
49
|
biimpar |
|
51 |
45 47 48 50
|
syl12anc |
|
52 |
14 38 51
|
reximssdv |
|
53 |
|
eliun |
|
54 |
52 53
|
sylibr |
|
55 |
|
nfv |
|
56 |
|
nfiu1 |
|
57 |
56
|
nfcri |
|
58 |
55 57
|
nfan |
|
59 |
4
|
ad2antrr |
|
60 |
5
|
ad2antrr |
|
61 |
|
eldifi |
|
62 |
61
|
adantl |
|
63 |
62
|
adantr |
|
64 |
|
eldifsni |
|
65 |
64
|
adantl |
|
66 |
65
|
adantr |
|
67 |
4
|
adantr |
|
68 |
|
fvexd |
|
69 |
25
|
adantr |
|
70 |
26
|
adantr |
|
71 |
62 70
|
eleqtrd |
|
72 |
69 71
|
ffvelcdmd |
|
73 |
20 7 23 67 68 72
|
pwselbas |
|
74 |
73
|
ffnd |
|
75 |
49
|
biimpa |
|
76 |
74 75
|
sylan |
|
77 |
76
|
simprd |
|
78 |
76
|
simpld |
|
79 |
1 2 3 59 60 7 63 66 77 78
|
irngnzply1lem |
|
80 |
79
|
adantllr |
|
81 |
53
|
biimpi |
|
82 |
81
|
adantl |
|
83 |
58 80 82
|
r19.29af |
|
84 |
54 83
|
impbida |
|
85 |
84
|
eqrdv |
|