Metamath Proof Explorer


Theorem irngnzply1

Description: In the case of a field E , the roots of nonzero polynomials p with coefficients in a subfield F are exactly the integral elements over F . Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over F are exactly the algebraic numbers. In this formula, dom O represents the polynomials, and Z the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses irngnzply1.o O = E evalSub 1 F
irngnzply1.z Z = 0 Poly 1 E
irngnzply1.1 0 ˙ = 0 E
irngnzply1.e φ E Field
irngnzply1.f φ F SubDRing E
Assertion irngnzply1 φ E IntgRing F = p dom O Z O p -1 0 ˙

Proof

Step Hyp Ref Expression
1 irngnzply1.o O = E evalSub 1 F
2 irngnzply1.z Z = 0 Poly 1 E
3 irngnzply1.1 0 ˙ = 0 E
4 irngnzply1.e φ E Field
5 irngnzply1.f φ F SubDRing E
6 eqid E 𝑠 F = E 𝑠 F
7 eqid Base E = Base E
8 4 fldcrngd φ E CRing
9 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
10 5 9 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
11 10 simp2d φ F SubRing E
12 1 6 7 3 8 11 elirng φ x E IntgRing F x Base E p Monic 1p E 𝑠 F O p x = 0 ˙
13 12 biimpa φ x E IntgRing F x Base E p Monic 1p E 𝑠 F O p x = 0 ˙
14 13 simprd φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙
15 eqid Poly 1 E 𝑠 F = Poly 1 E 𝑠 F
16 eqid Base Poly 1 E 𝑠 F = Base Poly 1 E 𝑠 F
17 eqid Monic 1p E 𝑠 F = Monic 1p E 𝑠 F
18 15 16 17 mon1pcl p Monic 1p E 𝑠 F p Base Poly 1 E 𝑠 F
19 18 adantl φ p Monic 1p E 𝑠 F p Base Poly 1 E 𝑠 F
20 eqid E 𝑠 Base E = E 𝑠 Base E
21 1 7 20 6 15 evls1rhm E CRing F SubRing E O Poly 1 E 𝑠 F RingHom E 𝑠 Base E
22 8 11 21 syl2anc φ O Poly 1 E 𝑠 F RingHom E 𝑠 Base E
23 eqid Base E 𝑠 Base E = Base E 𝑠 Base E
24 16 23 rhmf O Poly 1 E 𝑠 F RingHom E 𝑠 Base E O : Base Poly 1 E 𝑠 F Base E 𝑠 Base E
25 22 24 syl φ O : Base Poly 1 E 𝑠 F Base E 𝑠 Base E
26 25 fdmd φ dom O = Base Poly 1 E 𝑠 F
27 26 adantr φ p Monic 1p E 𝑠 F dom O = Base Poly 1 E 𝑠 F
28 19 27 eleqtrrd φ p Monic 1p E 𝑠 F p dom O
29 eqid 0 Poly 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
30 15 29 17 mon1pn0 p Monic 1p E 𝑠 F p 0 Poly 1 E 𝑠 F
31 30 adantl φ p Monic 1p E 𝑠 F p 0 Poly 1 E 𝑠 F
32 eqid Poly 1 E = Poly 1 E
33 32 6 15 16 11 2 ressply10g φ Z = 0 Poly 1 E 𝑠 F
34 33 adantr φ p Monic 1p E 𝑠 F Z = 0 Poly 1 E 𝑠 F
35 31 34 neeqtrrd φ p Monic 1p E 𝑠 F p Z
36 eldifsn p dom O Z p dom O p Z
37 28 35 36 sylanbrc φ p Monic 1p E 𝑠 F p dom O Z
38 37 ad2ant2r φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ p dom O Z
39 4 ad2antrr φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ E Field
40 fvexd φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ Base E V
41 25 ad2antrr φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ O : Base Poly 1 E 𝑠 F Base E 𝑠 Base E
42 18 ad2antrl φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ p Base Poly 1 E 𝑠 F
43 41 42 ffvelcdmd φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ O p Base E 𝑠 Base E
44 20 7 23 39 40 43 pwselbas φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ O p : Base E Base E
45 44 ffnd φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ O p Fn Base E
46 13 simpld φ x E IntgRing F x Base E
47 46 adantr φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ x Base E
48 simprr φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ O p x = 0 ˙
49 fniniseg O p Fn Base E x O p -1 0 ˙ x Base E O p x = 0 ˙
50 49 biimpar O p Fn Base E x Base E O p x = 0 ˙ x O p -1 0 ˙
51 45 47 48 50 syl12anc φ x E IntgRing F p Monic 1p E 𝑠 F O p x = 0 ˙ x O p -1 0 ˙
52 14 38 51 reximssdv φ x E IntgRing F p dom O Z x O p -1 0 ˙
53 eliun x p dom O Z O p -1 0 ˙ p dom O Z x O p -1 0 ˙
54 52 53 sylibr φ x E IntgRing F x p dom O Z O p -1 0 ˙
55 nfv p φ
56 nfiu1 _ p p dom O Z O p -1 0 ˙
57 56 nfcri p x p dom O Z O p -1 0 ˙
58 55 57 nfan p φ x p dom O Z O p -1 0 ˙
59 4 ad2antrr φ p dom O Z x O p -1 0 ˙ E Field
60 5 ad2antrr φ p dom O Z x O p -1 0 ˙ F SubDRing E
61 eldifi p dom O Z p dom O
62 61 adantl φ p dom O Z p dom O
63 62 adantr φ p dom O Z x O p -1 0 ˙ p dom O
64 eldifsni p dom O Z p Z
65 64 adantl φ p dom O Z p Z
66 65 adantr φ p dom O Z x O p -1 0 ˙ p Z
67 4 adantr φ p dom O Z E Field
68 fvexd φ p dom O Z Base E V
69 25 adantr φ p dom O Z O : Base Poly 1 E 𝑠 F Base E 𝑠 Base E
70 26 adantr φ p dom O Z dom O = Base Poly 1 E 𝑠 F
71 62 70 eleqtrd φ p dom O Z p Base Poly 1 E 𝑠 F
72 69 71 ffvelcdmd φ p dom O Z O p Base E 𝑠 Base E
73 20 7 23 67 68 72 pwselbas φ p dom O Z O p : Base E Base E
74 73 ffnd φ p dom O Z O p Fn Base E
75 49 biimpa O p Fn Base E x O p -1 0 ˙ x Base E O p x = 0 ˙
76 74 75 sylan φ p dom O Z x O p -1 0 ˙ x Base E O p x = 0 ˙
77 76 simprd φ p dom O Z x O p -1 0 ˙ O p x = 0 ˙
78 76 simpld φ p dom O Z x O p -1 0 ˙ x Base E
79 1 2 3 59 60 7 63 66 77 78 irngnzply1lem φ p dom O Z x O p -1 0 ˙ x E IntgRing F
80 79 adantllr φ x p dom O Z O p -1 0 ˙ p dom O Z x O p -1 0 ˙ x E IntgRing F
81 53 biimpi x p dom O Z O p -1 0 ˙ p dom O Z x O p -1 0 ˙
82 81 adantl φ x p dom O Z O p -1 0 ˙ p dom O Z x O p -1 0 ˙
83 58 80 82 r19.29af φ x p dom O Z O p -1 0 ˙ x E IntgRing F
84 54 83 impbida φ x E IntgRing F x p dom O Z O p -1 0 ˙
85 84 eqrdv φ E IntgRing F = p dom O Z O p -1 0 ˙