Metamath Proof Explorer


Theorem irngnzply1lem

Description: In the case of a field E , a root X of some nonzero polynomial P with coefficients in a subfield F is integral over F . (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses irngnzply1.o O = E evalSub 1 F
irngnzply1.z Z = 0 Poly 1 E
irngnzply1.1 0 ˙ = 0 E
irngnzply1.e φ E Field
irngnzply1.f φ F SubDRing E
irngnzply1lem.b B = Base E
irngnzply1lem.1 φ P dom O
irngnzply1lem.2 φ P Z
irngnzply1lem.3 φ O P X = 0 ˙
irngnzply1lem.x φ X B
Assertion irngnzply1lem φ X E IntgRing F

Proof

Step Hyp Ref Expression
1 irngnzply1.o O = E evalSub 1 F
2 irngnzply1.z Z = 0 Poly 1 E
3 irngnzply1.1 0 ˙ = 0 E
4 irngnzply1.e φ E Field
5 irngnzply1.f φ F SubDRing E
6 irngnzply1lem.b B = Base E
7 irngnzply1lem.1 φ P dom O
8 irngnzply1lem.2 φ P Z
9 irngnzply1lem.3 φ O P X = 0 ˙
10 irngnzply1lem.x φ X B
11 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
12 11 simp3bi F SubDRing E E 𝑠 F DivRing
13 5 12 syl φ E 𝑠 F DivRing
14 13 drngringd φ E 𝑠 F Ring
15 4 fldcrngd φ E CRing
16 5 11 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
17 16 simp2d φ F SubRing E
18 eqid E 𝑠 B = E 𝑠 B
19 eqid E 𝑠 F = E 𝑠 F
20 eqid Poly 1 E 𝑠 F = Poly 1 E 𝑠 F
21 1 6 18 19 20 evls1rhm E CRing F SubRing E O Poly 1 E 𝑠 F RingHom E 𝑠 B
22 15 17 21 syl2anc φ O Poly 1 E 𝑠 F RingHom E 𝑠 B
23 eqid Base Poly 1 E 𝑠 F = Base Poly 1 E 𝑠 F
24 eqid Base E 𝑠 B = Base E 𝑠 B
25 23 24 rhmf O Poly 1 E 𝑠 F RingHom E 𝑠 B O : Base Poly 1 E 𝑠 F Base E 𝑠 B
26 22 25 syl φ O : Base Poly 1 E 𝑠 F Base E 𝑠 B
27 26 fdmd φ dom O = Base Poly 1 E 𝑠 F
28 7 27 eleqtrd φ P Base Poly 1 E 𝑠 F
29 eqid Poly 1 E = Poly 1 E
30 29 19 20 23 17 2 ressply10g φ Z = 0 Poly 1 E 𝑠 F
31 8 30 neeqtrd φ P 0 Poly 1 E 𝑠 F
32 eqid 0 Poly 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
33 eqid Unic 1p E 𝑠 F = Unic 1p E 𝑠 F
34 20 23 32 33 drnguc1p E 𝑠 F DivRing P Base Poly 1 E 𝑠 F P 0 Poly 1 E 𝑠 F P Unic 1p E 𝑠 F
35 13 28 31 34 syl3anc φ P Unic 1p E 𝑠 F
36 eqid Monic 1p E 𝑠 F = Monic 1p E 𝑠 F
37 eqid Poly 1 E 𝑠 F = Poly 1 E 𝑠 F
38 eqid algSc Poly 1 E 𝑠 F = algSc Poly 1 E 𝑠 F
39 eqid deg 1 E 𝑠 F = deg 1 E 𝑠 F
40 eqid inv r E 𝑠 F = inv r E 𝑠 F
41 33 36 20 37 38 39 40 uc1pmon1p E 𝑠 F Ring P Unic 1p E 𝑠 F algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P Monic 1p E 𝑠 F
42 14 35 41 syl2anc φ algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P Monic 1p E 𝑠 F
43 simpr φ p = algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P p = algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P
44 43 fveq2d φ p = algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P O p = O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P
45 44 fveq1d φ p = algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P O p X = O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P X
46 45 eqeq1d φ p = algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P O p X = 0 ˙ O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P X = 0 ˙
47 eqid E = E
48 eqid Scalar Poly 1 E 𝑠 F = Scalar Poly 1 E 𝑠 F
49 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
50 4 5 49 syl2anc φ E 𝑠 F Field
51 50 fldcrngd φ E 𝑠 F CRing
52 20 ply1assa E 𝑠 F CRing Poly 1 E 𝑠 F AssAlg
53 51 52 syl φ Poly 1 E 𝑠 F AssAlg
54 assaring Poly 1 E 𝑠 F AssAlg Poly 1 E 𝑠 F Ring
55 53 54 syl φ Poly 1 E 𝑠 F Ring
56 20 ply1lmod E 𝑠 F Ring Poly 1 E 𝑠 F LMod
57 14 56 syl φ Poly 1 E 𝑠 F LMod
58 eqid Base Scalar Poly 1 E 𝑠 F = Base Scalar Poly 1 E 𝑠 F
59 38 48 55 57 58 23 asclf φ algSc Poly 1 E 𝑠 F : Base Scalar Poly 1 E 𝑠 F Base Poly 1 E 𝑠 F
60 eqid Base E 𝑠 F = Base E 𝑠 F
61 eqid 0 E 𝑠 F = 0 E 𝑠 F
62 39 20 32 23 deg1nn0cl E 𝑠 F Ring P Base Poly 1 E 𝑠 F P 0 Poly 1 E 𝑠 F deg 1 E 𝑠 F P 0
63 14 28 31 62 syl3anc φ deg 1 E 𝑠 F P 0
64 eqid coe 1 P = coe 1 P
65 64 23 20 60 coe1fvalcl P Base Poly 1 E 𝑠 F deg 1 E 𝑠 F P 0 coe 1 P deg 1 E 𝑠 F P Base E 𝑠 F
66 28 63 65 syl2anc φ coe 1 P deg 1 E 𝑠 F P Base E 𝑠 F
67 39 20 32 23 61 64 deg1ldg E 𝑠 F Ring P Base Poly 1 E 𝑠 F P 0 Poly 1 E 𝑠 F coe 1 P deg 1 E 𝑠 F P 0 E 𝑠 F
68 14 28 31 67 syl3anc φ coe 1 P deg 1 E 𝑠 F P 0 E 𝑠 F
69 60 61 40 13 66 68 drnginvrcld φ inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Base E 𝑠 F
70 20 ply1sca E 𝑠 F Field E 𝑠 F = Scalar Poly 1 E 𝑠 F
71 50 70 syl φ E 𝑠 F = Scalar Poly 1 E 𝑠 F
72 71 fveq2d φ Base E 𝑠 F = Base Scalar Poly 1 E 𝑠 F
73 69 72 eleqtrd φ inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Base Scalar Poly 1 E 𝑠 F
74 59 73 ffvelcdmd φ algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Base Poly 1 E 𝑠 F
75 1 6 20 19 23 37 47 15 17 74 28 10 evls1muld φ O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P X = O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P X E O P X
76 9 oveq2d φ O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P X E O P X = O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P X E 0 ˙
77 15 crngringd φ E Ring
78 6 fvexi B V
79 78 a1i φ B V
80 26 74 ffvelcdmd φ O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Base E 𝑠 B
81 18 6 24 4 79 80 pwselbas φ O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P : B B
82 81 10 ffvelcdmd φ O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P X B
83 6 47 3 ringrz E Ring O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P X B O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P X E 0 ˙ = 0 ˙
84 77 82 83 syl2anc φ O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P X E 0 ˙ = 0 ˙
85 75 76 84 3eqtrd φ O algSc Poly 1 E 𝑠 F inv r E 𝑠 F coe 1 P deg 1 E 𝑠 F P Poly 1 E 𝑠 F P X = 0 ˙
86 42 46 85 rspcedvd φ p Monic 1p E 𝑠 F O p X = 0 ˙
87 1 19 6 3 15 17 elirng φ X E IntgRing F X B p Monic 1p E 𝑠 F O p X = 0 ˙
88 10 86 87 mpbir2and φ X E IntgRing F