Metamath Proof Explorer


Theorem drnguc1p

Description: Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses drnguc1p.p P=Poly1R
drnguc1p.b B=BaseP
drnguc1p.z 0˙=0P
drnguc1p.c C=Unic1pR
Assertion drnguc1p RDivRingFBF0˙FC

Proof

Step Hyp Ref Expression
1 drnguc1p.p P=Poly1R
2 drnguc1p.b B=BaseP
3 drnguc1p.z 0˙=0P
4 drnguc1p.c C=Unic1pR
5 simp2 RDivRingFBF0˙FB
6 simp3 RDivRingFBF0˙F0˙
7 eqid coe1F=coe1F
8 eqid BaseR=BaseR
9 7 2 1 8 coe1f FBcoe1F:0BaseR
10 9 3ad2ant2 RDivRingFBF0˙coe1F:0BaseR
11 drngring RDivRingRRing
12 eqid deg1R=deg1R
13 12 1 3 2 deg1nn0cl RRingFBF0˙deg1RF0
14 11 13 syl3an1 RDivRingFBF0˙deg1RF0
15 10 14 ffvelcdmd RDivRingFBF0˙coe1Fdeg1RFBaseR
16 eqid 0R=0R
17 12 1 3 2 16 7 deg1ldg RRingFBF0˙coe1Fdeg1RF0R
18 11 17 syl3an1 RDivRingFBF0˙coe1Fdeg1RF0R
19 eqid UnitR=UnitR
20 8 19 16 drngunit RDivRingcoe1Fdeg1RFUnitRcoe1Fdeg1RFBaseRcoe1Fdeg1RF0R
21 20 3ad2ant1 RDivRingFBF0˙coe1Fdeg1RFUnitRcoe1Fdeg1RFBaseRcoe1Fdeg1RF0R
22 15 18 21 mpbir2and RDivRingFBF0˙coe1Fdeg1RFUnitR
23 1 2 3 12 4 19 isuc1p FCFBF0˙coe1Fdeg1RFUnitR
24 5 6 22 23 syl3anbrc RDivRingFBF0˙FC