Description: Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drnguc1p.p | |
|
drnguc1p.b | |
||
drnguc1p.z | |
||
drnguc1p.c | |
||
Assertion | drnguc1p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnguc1p.p | |
|
2 | drnguc1p.b | |
|
3 | drnguc1p.z | |
|
4 | drnguc1p.c | |
|
5 | simp2 | |
|
6 | simp3 | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 7 2 1 8 | coe1f | |
10 | 9 | 3ad2ant2 | |
11 | drngring | |
|
12 | eqid | |
|
13 | 12 1 3 2 | deg1nn0cl | |
14 | 11 13 | syl3an1 | |
15 | 10 14 | ffvelcdmd | |
16 | eqid | |
|
17 | 12 1 3 2 16 7 | deg1ldg | |
18 | 11 17 | syl3an1 | |
19 | eqid | |
|
20 | 8 19 16 | drngunit | |
21 | 20 | 3ad2ant1 | |
22 | 15 18 21 | mpbir2and | |
23 | 1 2 3 12 4 19 | isuc1p | |
24 | 5 6 22 23 | syl3anbrc | |