Metamath Proof Explorer


Theorem drnguc1p

Description: Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses drnguc1p.p P = Poly 1 R
drnguc1p.b B = Base P
drnguc1p.z 0 ˙ = 0 P
drnguc1p.c C = Unic 1p R
Assertion drnguc1p R DivRing F B F 0 ˙ F C

Proof

Step Hyp Ref Expression
1 drnguc1p.p P = Poly 1 R
2 drnguc1p.b B = Base P
3 drnguc1p.z 0 ˙ = 0 P
4 drnguc1p.c C = Unic 1p R
5 simp2 R DivRing F B F 0 ˙ F B
6 simp3 R DivRing F B F 0 ˙ F 0 ˙
7 eqid coe 1 F = coe 1 F
8 eqid Base R = Base R
9 7 2 1 8 coe1f F B coe 1 F : 0 Base R
10 9 3ad2ant2 R DivRing F B F 0 ˙ coe 1 F : 0 Base R
11 drngring R DivRing R Ring
12 eqid deg 1 R = deg 1 R
13 12 1 3 2 deg1nn0cl R Ring F B F 0 ˙ deg 1 R F 0
14 11 13 syl3an1 R DivRing F B F 0 ˙ deg 1 R F 0
15 10 14 ffvelrnd R DivRing F B F 0 ˙ coe 1 F deg 1 R F Base R
16 eqid 0 R = 0 R
17 12 1 3 2 16 7 deg1ldg R Ring F B F 0 ˙ coe 1 F deg 1 R F 0 R
18 11 17 syl3an1 R DivRing F B F 0 ˙ coe 1 F deg 1 R F 0 R
19 eqid Unit R = Unit R
20 8 19 16 drngunit R DivRing coe 1 F deg 1 R F Unit R coe 1 F deg 1 R F Base R coe 1 F deg 1 R F 0 R
21 20 3ad2ant1 R DivRing F B F 0 ˙ coe 1 F deg 1 R F Unit R coe 1 F deg 1 R F Base R coe 1 F deg 1 R F 0 R
22 15 18 21 mpbir2and R DivRing F B F 0 ˙ coe 1 F deg 1 R F Unit R
23 1 2 3 12 4 19 isuc1p F C F B F 0 ˙ coe 1 F deg 1 R F Unit R
24 5 6 22 23 syl3anbrc R DivRing F B F 0 ˙ F C