| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngnzply1.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
| 2 |
|
irngnzply1.z |
⊢ 𝑍 = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 3 |
|
irngnzply1.1 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
| 4 |
|
irngnzply1.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 5 |
|
irngnzply1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 6 |
|
irngnzply1lem.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 7 |
|
irngnzply1lem.1 |
⊢ ( 𝜑 → 𝑃 ∈ dom 𝑂 ) |
| 8 |
|
irngnzply1lem.2 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑍 ) |
| 9 |
|
irngnzply1lem.3 |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑃 ) ‘ 𝑋 ) = 0 ) |
| 10 |
|
irngnzply1lem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 11 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
| 12 |
11
|
simp3bi |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 14 |
13
|
drngringd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 15 |
4
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 16 |
5 11
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
| 17 |
16
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 18 |
|
eqid |
⊢ ( 𝐸 ↑s 𝐵 ) = ( 𝐸 ↑s 𝐵 ) |
| 19 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 20 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 21 |
1 6 18 19 20
|
evls1rhm |
⊢ ( ( 𝐸 ∈ CRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) → 𝑂 ∈ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) RingHom ( 𝐸 ↑s 𝐵 ) ) ) |
| 22 |
15 17 21
|
syl2anc |
⊢ ( 𝜑 → 𝑂 ∈ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) RingHom ( 𝐸 ↑s 𝐵 ) ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 24 |
|
eqid |
⊢ ( Base ‘ ( 𝐸 ↑s 𝐵 ) ) = ( Base ‘ ( 𝐸 ↑s 𝐵 ) ) |
| 25 |
23 24
|
rhmf |
⊢ ( 𝑂 ∈ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) RingHom ( 𝐸 ↑s 𝐵 ) ) → 𝑂 : ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ⟶ ( Base ‘ ( 𝐸 ↑s 𝐵 ) ) ) |
| 26 |
22 25
|
syl |
⊢ ( 𝜑 → 𝑂 : ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ⟶ ( Base ‘ ( 𝐸 ↑s 𝐵 ) ) ) |
| 27 |
26
|
fdmd |
⊢ ( 𝜑 → dom 𝑂 = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 28 |
7 27
|
eleqtrd |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 29 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 30 |
29 19 20 23 17 2
|
ressply10g |
⊢ ( 𝜑 → 𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 31 |
8 30
|
neeqtrd |
⊢ ( 𝜑 → 𝑃 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 32 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 33 |
|
eqid |
⊢ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 34 |
20 23 32 33
|
drnguc1p |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ DivRing ∧ 𝑃 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ 𝑃 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) → 𝑃 ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 35 |
13 28 31 34
|
syl3anc |
⊢ ( 𝜑 → 𝑃 ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 36 |
|
eqid |
⊢ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 37 |
|
eqid |
⊢ ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 38 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 39 |
|
eqid |
⊢ ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 40 |
|
eqid |
⊢ ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) = ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 41 |
33 36 20 37 38 39 40
|
uc1pmon1p |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝑃 ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 42 |
14 35 41
|
syl2anc |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 = ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) → 𝑝 = ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) |
| 44 |
43
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑝 = ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) ) |
| 45 |
44
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑝 = ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) ‘ 𝑋 ) ) |
| 46 |
45
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑝 = ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) → ( ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = 0 ↔ ( ( 𝑂 ‘ ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) ‘ 𝑋 ) = 0 ) ) |
| 47 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
| 48 |
|
eqid |
⊢ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 49 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 50 |
4 5 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 51 |
50
|
fldcrngd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ CRing ) |
| 52 |
20
|
ply1assa |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ CRing → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ AssAlg ) |
| 53 |
51 52
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ AssAlg ) |
| 54 |
|
assaring |
⊢ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ AssAlg → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ) |
| 56 |
20
|
ply1lmod |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Ring → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ LMod ) |
| 57 |
14 56
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ LMod ) |
| 58 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 59 |
38 48 55 57 58 23
|
asclf |
⊢ ( 𝜑 → ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) : ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ⟶ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 60 |
|
eqid |
⊢ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 61 |
|
eqid |
⊢ ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 62 |
39 20 32 23
|
deg1nn0cl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝑃 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ 𝑃 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ∈ ℕ0 ) |
| 63 |
14 28 31 62
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ∈ ℕ0 ) |
| 64 |
|
eqid |
⊢ ( coe1 ‘ 𝑃 ) = ( coe1 ‘ 𝑃 ) |
| 65 |
64 23 20 60
|
coe1fvalcl |
⊢ ( ( 𝑃 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ∈ ℕ0 ) → ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 66 |
28 63 65
|
syl2anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 67 |
39 20 32 23 61 64
|
deg1ldg |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝑃 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ 𝑃 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) → ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ≠ ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 68 |
14 28 31 67
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ≠ ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 69 |
60 61 40 13 66 68
|
drnginvrcld |
⊢ ( 𝜑 → ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 70 |
20
|
ply1sca |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Field → ( 𝐸 ↾s 𝐹 ) = ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 71 |
50 70
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) = ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 72 |
71
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 73 |
69 72
|
eleqtrd |
⊢ ( 𝜑 → ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ∈ ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 74 |
59 73
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 75 |
1 6 20 19 23 37 47 15 17 74 28 10
|
evls1muld |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) ‘ 𝑋 ) = ( ( ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) ‘ 𝑋 ) ( .r ‘ 𝐸 ) ( ( 𝑂 ‘ 𝑃 ) ‘ 𝑋 ) ) ) |
| 76 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) ‘ 𝑋 ) ( .r ‘ 𝐸 ) ( ( 𝑂 ‘ 𝑃 ) ‘ 𝑋 ) ) = ( ( ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) ‘ 𝑋 ) ( .r ‘ 𝐸 ) 0 ) ) |
| 77 |
15
|
crngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 78 |
6
|
fvexi |
⊢ 𝐵 ∈ V |
| 79 |
78
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 80 |
26 74
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) ∈ ( Base ‘ ( 𝐸 ↑s 𝐵 ) ) ) |
| 81 |
18 6 24 4 79 80
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) : 𝐵 ⟶ 𝐵 ) |
| 82 |
81 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 83 |
6 47 3
|
ringrz |
⊢ ( ( 𝐸 ∈ Ring ∧ ( ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) ‘ 𝑋 ) ( .r ‘ 𝐸 ) 0 ) = 0 ) |
| 84 |
77 82 83
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ) ‘ 𝑋 ) ( .r ‘ 𝐸 ) 0 ) = 0 ) |
| 85 |
75 76 84
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( ( algSc ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ ( ( invr ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( coe1 ‘ 𝑃 ) ‘ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ 𝑃 ) ) ) ) ( .r ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) 𝑃 ) ) ‘ 𝑋 ) = 0 ) |
| 86 |
42 46 85
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = 0 ) |
| 87 |
1 19 6 3 15 17
|
elirng |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐸 IntgRing 𝐹 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑝 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = 0 ) ) ) |
| 88 |
10 86 87
|
mpbir2and |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐸 IntgRing 𝐹 ) ) |