Step |
Hyp |
Ref |
Expression |
1 |
|
irngval.o |
|- O = ( R evalSub1 S ) |
2 |
|
irngval.u |
|- U = ( R |`s S ) |
3 |
|
irngval.b |
|- B = ( Base ` R ) |
4 |
|
irngval.0 |
|- .0. = ( 0g ` R ) |
5 |
|
elirng.r |
|- ( ph -> R e. CRing ) |
6 |
|
elirng.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
7 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
8 |
3
|
subrgss |
|- ( S e. ( SubRing ` R ) -> S C_ B ) |
9 |
6 8
|
syl |
|- ( ph -> S C_ B ) |
10 |
1 2 3 4 7 9
|
irngval |
|- ( ph -> ( R IntgRing S ) = U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) ) |
11 |
10
|
eleq2d |
|- ( ph -> ( X e. ( R IntgRing S ) <-> X e. U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) ) ) |
12 |
|
eliun |
|- ( X e. U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) <-> E. f e. ( Monic1p ` U ) X e. ( `' ( O ` f ) " { .0. } ) ) |
13 |
11 12
|
bitrdi |
|- ( ph -> ( X e. ( R IntgRing S ) <-> E. f e. ( Monic1p ` U ) X e. ( `' ( O ` f ) " { .0. } ) ) ) |
14 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
15 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
16 |
7
|
adantr |
|- ( ( ph /\ f e. ( Monic1p ` U ) ) -> R e. Ring ) |
17 |
3
|
fvexi |
|- B e. _V |
18 |
17
|
a1i |
|- ( ( ph /\ f e. ( Monic1p ` U ) ) -> B e. _V ) |
19 |
|
eqid |
|- ( Poly1 ` U ) = ( Poly1 ` U ) |
20 |
1 3 14 2 19
|
evls1rhm |
|- ( ( R e. CRing /\ S e. ( SubRing ` R ) ) -> O e. ( ( Poly1 ` U ) RingHom ( R ^s B ) ) ) |
21 |
5 6 20
|
syl2anc |
|- ( ph -> O e. ( ( Poly1 ` U ) RingHom ( R ^s B ) ) ) |
22 |
|
eqid |
|- ( Base ` ( Poly1 ` U ) ) = ( Base ` ( Poly1 ` U ) ) |
23 |
22 15
|
rhmf |
|- ( O e. ( ( Poly1 ` U ) RingHom ( R ^s B ) ) -> O : ( Base ` ( Poly1 ` U ) ) --> ( Base ` ( R ^s B ) ) ) |
24 |
21 23
|
syl |
|- ( ph -> O : ( Base ` ( Poly1 ` U ) ) --> ( Base ` ( R ^s B ) ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ f e. ( Monic1p ` U ) ) -> O : ( Base ` ( Poly1 ` U ) ) --> ( Base ` ( R ^s B ) ) ) |
26 |
|
eqid |
|- ( Monic1p ` U ) = ( Monic1p ` U ) |
27 |
19 22 26
|
mon1pcl |
|- ( f e. ( Monic1p ` U ) -> f e. ( Base ` ( Poly1 ` U ) ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ f e. ( Monic1p ` U ) ) -> f e. ( Base ` ( Poly1 ` U ) ) ) |
29 |
25 28
|
ffvelcdmd |
|- ( ( ph /\ f e. ( Monic1p ` U ) ) -> ( O ` f ) e. ( Base ` ( R ^s B ) ) ) |
30 |
14 3 15 16 18 29
|
pwselbas |
|- ( ( ph /\ f e. ( Monic1p ` U ) ) -> ( O ` f ) : B --> B ) |
31 |
|
ffn |
|- ( ( O ` f ) : B --> B -> ( O ` f ) Fn B ) |
32 |
|
fniniseg |
|- ( ( O ` f ) Fn B -> ( X e. ( `' ( O ` f ) " { .0. } ) <-> ( X e. B /\ ( ( O ` f ) ` X ) = .0. ) ) ) |
33 |
30 31 32
|
3syl |
|- ( ( ph /\ f e. ( Monic1p ` U ) ) -> ( X e. ( `' ( O ` f ) " { .0. } ) <-> ( X e. B /\ ( ( O ` f ) ` X ) = .0. ) ) ) |
34 |
33
|
rexbidva |
|- ( ph -> ( E. f e. ( Monic1p ` U ) X e. ( `' ( O ` f ) " { .0. } ) <-> E. f e. ( Monic1p ` U ) ( X e. B /\ ( ( O ` f ) ` X ) = .0. ) ) ) |
35 |
13 34
|
bitrd |
|- ( ph -> ( X e. ( R IntgRing S ) <-> E. f e. ( Monic1p ` U ) ( X e. B /\ ( ( O ` f ) ` X ) = .0. ) ) ) |
36 |
|
r19.42v |
|- ( E. f e. ( Monic1p ` U ) ( X e. B /\ ( ( O ` f ) ` X ) = .0. ) <-> ( X e. B /\ E. f e. ( Monic1p ` U ) ( ( O ` f ) ` X ) = .0. ) ) |
37 |
35 36
|
bitrdi |
|- ( ph -> ( X e. ( R IntgRing S ) <-> ( X e. B /\ E. f e. ( Monic1p ` U ) ( ( O ` f ) ` X ) = .0. ) ) ) |