Step |
Hyp |
Ref |
Expression |
1 |
|
irngval.o |
|- O = ( R evalSub1 S ) |
2 |
|
irngval.u |
|- U = ( R |`s S ) |
3 |
|
irngval.b |
|- B = ( Base ` R ) |
4 |
|
irngval.0 |
|- .0. = ( 0g ` R ) |
5 |
|
irngval.r |
|- ( ph -> R e. Ring ) |
6 |
|
irngval.s |
|- ( ph -> S C_ B ) |
7 |
5
|
elexd |
|- ( ph -> R e. _V ) |
8 |
3
|
fvexi |
|- B e. _V |
9 |
8
|
a1i |
|- ( ph -> B e. _V ) |
10 |
9 6
|
ssexd |
|- ( ph -> S e. _V ) |
11 |
|
fvexd |
|- ( ph -> ( Monic1p ` U ) e. _V ) |
12 |
|
fvex |
|- ( O ` f ) e. _V |
13 |
12
|
cnvex |
|- `' ( O ` f ) e. _V |
14 |
13
|
imaex |
|- ( `' ( O ` f ) " { .0. } ) e. _V |
15 |
14
|
rgenw |
|- A. f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) e. _V |
16 |
|
iunexg |
|- ( ( ( Monic1p ` U ) e. _V /\ A. f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) e. _V ) -> U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) e. _V ) |
17 |
11 15 16
|
sylancl |
|- ( ph -> U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) e. _V ) |
18 |
|
oveq12 |
|- ( ( r = R /\ s = S ) -> ( r |`s s ) = ( R |`s S ) ) |
19 |
18 2
|
eqtr4di |
|- ( ( r = R /\ s = S ) -> ( r |`s s ) = U ) |
20 |
19
|
fveq2d |
|- ( ( r = R /\ s = S ) -> ( Monic1p ` ( r |`s s ) ) = ( Monic1p ` U ) ) |
21 |
|
oveq12 |
|- ( ( r = R /\ s = S ) -> ( r evalSub1 s ) = ( R evalSub1 S ) ) |
22 |
21 1
|
eqtr4di |
|- ( ( r = R /\ s = S ) -> ( r evalSub1 s ) = O ) |
23 |
22
|
fveq1d |
|- ( ( r = R /\ s = S ) -> ( ( r evalSub1 s ) ` f ) = ( O ` f ) ) |
24 |
23
|
cnveqd |
|- ( ( r = R /\ s = S ) -> `' ( ( r evalSub1 s ) ` f ) = `' ( O ` f ) ) |
25 |
|
simpl |
|- ( ( r = R /\ s = S ) -> r = R ) |
26 |
25
|
fveq2d |
|- ( ( r = R /\ s = S ) -> ( 0g ` r ) = ( 0g ` R ) ) |
27 |
26 4
|
eqtr4di |
|- ( ( r = R /\ s = S ) -> ( 0g ` r ) = .0. ) |
28 |
27
|
sneqd |
|- ( ( r = R /\ s = S ) -> { ( 0g ` r ) } = { .0. } ) |
29 |
24 28
|
imaeq12d |
|- ( ( r = R /\ s = S ) -> ( `' ( ( r evalSub1 s ) ` f ) " { ( 0g ` r ) } ) = ( `' ( O ` f ) " { .0. } ) ) |
30 |
20 29
|
iuneq12d |
|- ( ( r = R /\ s = S ) -> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' ( ( r evalSub1 s ) ` f ) " { ( 0g ` r ) } ) = U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) ) |
31 |
|
df-irng |
|- IntgRing = ( r e. _V , s e. _V |-> U_ f e. ( Monic1p ` ( r |`s s ) ) ( `' ( ( r evalSub1 s ) ` f ) " { ( 0g ` r ) } ) ) |
32 |
30 31
|
ovmpoga |
|- ( ( R e. _V /\ S e. _V /\ U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) e. _V ) -> ( R IntgRing S ) = U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) ) |
33 |
7 10 17 32
|
syl3anc |
|- ( ph -> ( R IntgRing S ) = U_ f e. ( Monic1p ` U ) ( `' ( O ` f ) " { .0. } ) ) |