Metamath Proof Explorer


Theorem 0ringsubrg

Description: A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses 0ringsubrg.1
|- B = ( Base ` R )
0ringsubrg.2
|- ( ph -> R e. Ring )
0ringsubrg.3
|- ( ph -> ( # ` B ) = 1 )
0ringsubrg.4
|- ( ph -> S e. ( SubRing ` R ) )
Assertion 0ringsubrg
|- ( ph -> ( # ` S ) = 1 )

Proof

Step Hyp Ref Expression
1 0ringsubrg.1
 |-  B = ( Base ` R )
2 0ringsubrg.2
 |-  ( ph -> R e. Ring )
3 0ringsubrg.3
 |-  ( ph -> ( # ` B ) = 1 )
4 0ringsubrg.4
 |-  ( ph -> S e. ( SubRing ` R ) )
5 1 subrgss
 |-  ( S e. ( SubRing ` R ) -> S C_ B )
6 4 5 syl
 |-  ( ph -> S C_ B )
7 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
8 1 7 0ring
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { ( 0g ` R ) } )
9 2 3 8 syl2anc
 |-  ( ph -> B = { ( 0g ` R ) } )
10 6 9 sseqtrd
 |-  ( ph -> S C_ { ( 0g ` R ) } )
11 sssn
 |-  ( S C_ { ( 0g ` R ) } <-> ( S = (/) \/ S = { ( 0g ` R ) } ) )
12 10 11 sylib
 |-  ( ph -> ( S = (/) \/ S = { ( 0g ` R ) } ) )
13 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
14 13 subrg1cl
 |-  ( S e. ( SubRing ` R ) -> ( 1r ` R ) e. S )
15 4 14 syl
 |-  ( ph -> ( 1r ` R ) e. S )
16 n0i
 |-  ( ( 1r ` R ) e. S -> -. S = (/) )
17 15 16 syl
 |-  ( ph -> -. S = (/) )
18 12 17 orcnd
 |-  ( ph -> S = { ( 0g ` R ) } )
19 18 fveq2d
 |-  ( ph -> ( # ` S ) = ( # ` { ( 0g ` R ) } ) )
20 fvex
 |-  ( 0g ` R ) e. _V
21 hashsng
 |-  ( ( 0g ` R ) e. _V -> ( # ` { ( 0g ` R ) } ) = 1 )
22 20 21 ax-mp
 |-  ( # ` { ( 0g ` R ) } ) = 1
23 19 22 eqtrdi
 |-  ( ph -> ( # ` S ) = 1 )