| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ringmon1p.1 |
|- M = ( Monic1p ` R ) |
| 2 |
|
0ringmon1p.2 |
|- B = ( Base ` R ) |
| 3 |
|
0ringmon1p.3 |
|- ( ph -> R e. Ring ) |
| 4 |
|
0ringmon1p.4 |
|- ( ph -> ( # ` B ) = 1 ) |
| 5 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 6 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
| 7 |
|
eqid |
|- ( 0g ` ( Poly1 ` R ) ) = ( 0g ` ( Poly1 ` R ) ) |
| 8 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
| 9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 10 |
5 6 7 8 1 9
|
ismon1p |
|- ( p e. M <-> ( p e. ( Base ` ( Poly1 ` R ) ) /\ p =/= ( 0g ` ( Poly1 ` R ) ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) |
| 11 |
10
|
biimpi |
|- ( p e. M -> ( p e. ( Base ` ( Poly1 ` R ) ) /\ p =/= ( 0g ` ( Poly1 ` R ) ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ p e. M ) -> ( p e. ( Base ` ( Poly1 ` R ) ) /\ p =/= ( 0g ` ( Poly1 ` R ) ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) ) |
| 13 |
12
|
simp3d |
|- ( ( ph /\ p e. M ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) |
| 14 |
3
|
adantr |
|- ( ( ph /\ p e. M ) -> R e. Ring ) |
| 15 |
12
|
simp1d |
|- ( ( ph /\ p e. M ) -> p e. ( Base ` ( Poly1 ` R ) ) ) |
| 16 |
12
|
simp2d |
|- ( ( ph /\ p e. M ) -> p =/= ( 0g ` ( Poly1 ` R ) ) ) |
| 17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 18 |
|
eqid |
|- ( coe1 ` p ) = ( coe1 ` p ) |
| 19 |
8 5 7 6 17 18
|
deg1ldg |
|- ( ( R e. Ring /\ p e. ( Base ` ( Poly1 ` R ) ) /\ p =/= ( 0g ` ( Poly1 ` R ) ) ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) =/= ( 0g ` R ) ) |
| 20 |
14 15 16 19
|
syl3anc |
|- ( ( ph /\ p e. M ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) =/= ( 0g ` R ) ) |
| 21 |
2 17 9
|
0ring01eq |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( 0g ` R ) = ( 1r ` R ) ) |
| 22 |
3 4 21
|
syl2anc |
|- ( ph -> ( 0g ` R ) = ( 1r ` R ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ p e. M ) -> ( 0g ` R ) = ( 1r ` R ) ) |
| 24 |
20 23
|
neeqtrd |
|- ( ( ph /\ p e. M ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) =/= ( 1r ` R ) ) |
| 25 |
24
|
neneqd |
|- ( ( ph /\ p e. M ) -> -. ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) |
| 26 |
13 25
|
pm2.65da |
|- ( ph -> -. p e. M ) |
| 27 |
26
|
eq0rdv |
|- ( ph -> M = (/) ) |