Metamath Proof Explorer


Theorem 0ringmon1p

Description: There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses 0ringmon1p.1
|- M = ( Monic1p ` R )
0ringmon1p.2
|- B = ( Base ` R )
0ringmon1p.3
|- ( ph -> R e. Ring )
0ringmon1p.4
|- ( ph -> ( # ` B ) = 1 )
Assertion 0ringmon1p
|- ( ph -> M = (/) )

Proof

Step Hyp Ref Expression
1 0ringmon1p.1
 |-  M = ( Monic1p ` R )
2 0ringmon1p.2
 |-  B = ( Base ` R )
3 0ringmon1p.3
 |-  ( ph -> R e. Ring )
4 0ringmon1p.4
 |-  ( ph -> ( # ` B ) = 1 )
5 eqid
 |-  ( Poly1 ` R ) = ( Poly1 ` R )
6 eqid
 |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) )
7 eqid
 |-  ( 0g ` ( Poly1 ` R ) ) = ( 0g ` ( Poly1 ` R ) )
8 eqid
 |-  ( deg1 ` R ) = ( deg1 ` R )
9 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
10 5 6 7 8 1 9 ismon1p
 |-  ( p e. M <-> ( p e. ( Base ` ( Poly1 ` R ) ) /\ p =/= ( 0g ` ( Poly1 ` R ) ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) )
11 10 biimpi
 |-  ( p e. M -> ( p e. ( Base ` ( Poly1 ` R ) ) /\ p =/= ( 0g ` ( Poly1 ` R ) ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) )
12 11 adantl
 |-  ( ( ph /\ p e. M ) -> ( p e. ( Base ` ( Poly1 ` R ) ) /\ p =/= ( 0g ` ( Poly1 ` R ) ) /\ ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) ) )
13 12 simp3d
 |-  ( ( ph /\ p e. M ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) )
14 3 adantr
 |-  ( ( ph /\ p e. M ) -> R e. Ring )
15 12 simp1d
 |-  ( ( ph /\ p e. M ) -> p e. ( Base ` ( Poly1 ` R ) ) )
16 12 simp2d
 |-  ( ( ph /\ p e. M ) -> p =/= ( 0g ` ( Poly1 ` R ) ) )
17 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
18 eqid
 |-  ( coe1 ` p ) = ( coe1 ` p )
19 8 5 7 6 17 18 deg1ldg
 |-  ( ( R e. Ring /\ p e. ( Base ` ( Poly1 ` R ) ) /\ p =/= ( 0g ` ( Poly1 ` R ) ) ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) =/= ( 0g ` R ) )
20 14 15 16 19 syl3anc
 |-  ( ( ph /\ p e. M ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) =/= ( 0g ` R ) )
21 2 17 9 0ring01eq
 |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( 0g ` R ) = ( 1r ` R ) )
22 3 4 21 syl2anc
 |-  ( ph -> ( 0g ` R ) = ( 1r ` R ) )
23 22 adantr
 |-  ( ( ph /\ p e. M ) -> ( 0g ` R ) = ( 1r ` R ) )
24 20 23 neeqtrd
 |-  ( ( ph /\ p e. M ) -> ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) =/= ( 1r ` R ) )
25 24 neneqd
 |-  ( ( ph /\ p e. M ) -> -. ( ( coe1 ` p ) ` ( ( deg1 ` R ) ` p ) ) = ( 1r ` R ) )
26 13 25 pm2.65da
 |-  ( ph -> -. p e. M )
27 26 eq0rdv
 |-  ( ph -> M = (/) )