| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ring.b |
|- B = ( Base ` R ) |
| 2 |
|
0ring.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
0ring01eq.1 |
|- .1. = ( 1r ` R ) |
| 4 |
1 2
|
0ring |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) |
| 5 |
1 3
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
| 6 |
|
eleq2 |
|- ( B = { .0. } -> ( .1. e. B <-> .1. e. { .0. } ) ) |
| 7 |
|
elsni |
|- ( .1. e. { .0. } -> .1. = .0. ) |
| 8 |
7
|
eqcomd |
|- ( .1. e. { .0. } -> .0. = .1. ) |
| 9 |
6 8
|
biimtrdi |
|- ( B = { .0. } -> ( .1. e. B -> .0. = .1. ) ) |
| 10 |
5 9
|
syl5com |
|- ( R e. Ring -> ( B = { .0. } -> .0. = .1. ) ) |
| 11 |
10
|
adantr |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( B = { .0. } -> .0. = .1. ) ) |
| 12 |
4 11
|
mpd |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .0. = .1. ) |