| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ring.b |
|- B = ( Base ` R ) |
| 2 |
|
0ring.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
0ring01eq.1 |
|- .1. = ( 1r ` R ) |
| 4 |
|
eqcom |
|- ( .0. = .1. <-> .1. = .0. ) |
| 5 |
1 2
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
| 6 |
5
|
ne0d |
|- ( R e. Ring -> B =/= (/) ) |
| 7 |
5
|
adantr |
|- ( ( R e. Ring /\ x e. B ) -> .0. e. B ) |
| 8 |
1 3 2
|
ring1eq0 |
|- ( ( R e. Ring /\ x e. B /\ .0. e. B ) -> ( .1. = .0. -> x = .0. ) ) |
| 9 |
7 8
|
mpd3an3 |
|- ( ( R e. Ring /\ x e. B ) -> ( .1. = .0. -> x = .0. ) ) |
| 10 |
9
|
impancom |
|- ( ( R e. Ring /\ .1. = .0. ) -> ( x e. B -> x = .0. ) ) |
| 11 |
10
|
ralrimiv |
|- ( ( R e. Ring /\ .1. = .0. ) -> A. x e. B x = .0. ) |
| 12 |
|
eqsn |
|- ( B =/= (/) -> ( B = { .0. } <-> A. x e. B x = .0. ) ) |
| 13 |
12
|
biimpar |
|- ( ( B =/= (/) /\ A. x e. B x = .0. ) -> B = { .0. } ) |
| 14 |
6 11 13
|
syl2an2r |
|- ( ( R e. Ring /\ .1. = .0. ) -> B = { .0. } ) |
| 15 |
4 14
|
sylan2b |
|- ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) |