Metamath Proof Explorer


Theorem 01eq0ring

Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019)

Ref Expression
Hypotheses 0ring.b 𝐵 = ( Base ‘ 𝑅 )
0ring.0 0 = ( 0g𝑅 )
0ring01eq.1 1 = ( 1r𝑅 )
Assertion 01eq0ring ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } )

Proof

Step Hyp Ref Expression
1 0ring.b 𝐵 = ( Base ‘ 𝑅 )
2 0ring.0 0 = ( 0g𝑅 )
3 0ring01eq.1 1 = ( 1r𝑅 )
4 1 fvexi 𝐵 ∈ V
5 hashv01gt1 ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) )
6 4 5 ax-mp ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) )
7 hasheq0 ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) )
8 4 7 ax-mp ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ )
9 ne0i ( 0𝐵𝐵 ≠ ∅ )
10 eqneqall ( 𝐵 = ∅ → ( 𝐵 ≠ ∅ → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) ) )
11 9 10 syl5com ( 0𝐵 → ( 𝐵 = ∅ → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) ) )
12 8 11 syl5bi ( 0𝐵 → ( ( ♯ ‘ 𝐵 ) = 0 → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) ) )
13 1 2 ring0cl ( 𝑅 ∈ Ring → 0𝐵 )
14 12 13 syl11 ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) ) )
15 eqneqall ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) )
16 15 a1d ( ( ♯ ‘ 𝐵 ) = 1 → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) ) )
17 1 3 2 ring1ne0 ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 10 )
18 17 necomd ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 01 )
19 18 ex ( 𝑅 ∈ Ring → ( 1 < ( ♯ ‘ 𝐵 ) → 01 ) )
20 19 a1i ( ( ♯ ‘ 𝐵 ) ≠ 1 → ( 𝑅 ∈ Ring → ( 1 < ( ♯ ‘ 𝐵 ) → 01 ) ) )
21 20 com13 ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) ) )
22 14 16 21 3jaoi ( ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) ) )
23 6 22 ax-mp ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 01 ) )
24 23 necon4d ( 𝑅 ∈ Ring → ( 0 = 1 → ( ♯ ‘ 𝐵 ) = 1 ) )
25 24 imp ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → ( ♯ ‘ 𝐵 ) = 1 )
26 1 2 0ring ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } )
27 25 26 syldan ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } )