| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ringmon1p.1 |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
| 2 |
|
0ringmon1p.2 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
0ringmon1p.3 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
0ringmon1p.4 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 ) |
| 5 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) = ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) |
| 8 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 10 |
5 6 7 8 1 9
|
ismon1p |
⊢ ( 𝑝 ∈ 𝑀 ↔ ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 11 |
10
|
biimpi |
⊢ ( 𝑝 ∈ 𝑀 → ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 13 |
12
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → 𝑅 ∈ Ring ) |
| 15 |
12
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 16 |
12
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 18 |
|
eqid |
⊢ ( coe1 ‘ 𝑝 ) = ( coe1 ‘ 𝑝 ) |
| 19 |
8 5 7 6 17 18
|
deg1ldg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
| 20 |
14 15 16 19
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
| 21 |
2 17 9
|
0ring01eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) |
| 22 |
3 4 21
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) |
| 24 |
20 23
|
neeqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) ≠ ( 1r ‘ 𝑅 ) ) |
| 25 |
24
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑀 ) → ¬ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) |
| 26 |
13 25
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝑝 ∈ 𝑀 ) |
| 27 |
26
|
eq0rdv |
⊢ ( 𝜑 → 𝑀 = ∅ ) |