Step |
Hyp |
Ref |
Expression |
1 |
|
fply1.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
2 |
|
fply1.2 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
fply1.3 |
⊢ 𝑃 = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
4 |
|
fply1.4 |
⊢ ( 𝜑 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ 𝐵 ) |
5 |
|
fply1.5 |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
6 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
7 |
|
ovex |
⊢ ( ℕ0 ↑m 1o ) ∈ V |
8 |
6 7
|
elmap |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m ( ℕ0 ↑m 1o ) ) ↔ 𝐹 : ( ℕ0 ↑m 1o ) ⟶ 𝐵 ) |
9 |
4 8
|
sylibr |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ( ℕ0 ↑m 1o ) ) ) |
10 |
|
df1o2 |
⊢ 1o = { ∅ } |
11 |
|
snfi |
⊢ { ∅ } ∈ Fin |
12 |
10 11
|
eqeltri |
⊢ 1o ∈ Fin |
13 |
12
|
a1i |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → 1o ∈ Fin ) |
14 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → 𝑓 : 1o ⟶ ℕ0 ) |
15 |
13 14
|
fisuppfi |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → ( ◡ 𝑓 “ ℕ ) ∈ Fin ) |
16 |
15
|
rabeqc |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = ( ℕ0 ↑m 1o ) |
17 |
16
|
oveq2i |
⊢ ( 𝐵 ↑m { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = ( 𝐵 ↑m ( ℕ0 ↑m 1o ) ) |
18 |
9 17
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
19 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
20 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
21 |
|
eqid |
⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
22 |
|
1oex |
⊢ 1o ∈ V |
23 |
22
|
a1i |
⊢ ( 𝜑 → 1o ∈ V ) |
24 |
19 2 20 21 23
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( 𝐵 ↑m { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
25 |
18 24
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
26 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
27 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
28 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
29 |
27 28 3
|
ply1bas |
⊢ 𝑃 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
30 |
26 19 21 1 29
|
mplelbas |
⊢ ( 𝐹 ∈ 𝑃 ↔ ( 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ∧ 𝐹 finSupp 0 ) ) |
31 |
25 5 30
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |