Metamath Proof Explorer


Theorem fply1

Description: Conditions for a function to be an univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023)

Ref Expression
Hypotheses fply1.1 0 = ( 0g𝑅 )
fply1.2 𝐵 = ( Base ‘ 𝑅 )
fply1.3 𝑃 = ( Base ‘ ( Poly1𝑅 ) )
fply1.4 ( 𝜑𝐹 : ( ℕ0m 1o ) ⟶ 𝐵 )
fply1.5 ( 𝜑𝐹 finSupp 0 )
Assertion fply1 ( 𝜑𝐹𝑃 )

Proof

Step Hyp Ref Expression
1 fply1.1 0 = ( 0g𝑅 )
2 fply1.2 𝐵 = ( Base ‘ 𝑅 )
3 fply1.3 𝑃 = ( Base ‘ ( Poly1𝑅 ) )
4 fply1.4 ( 𝜑𝐹 : ( ℕ0m 1o ) ⟶ 𝐵 )
5 fply1.5 ( 𝜑𝐹 finSupp 0 )
6 2 fvexi 𝐵 ∈ V
7 ovex ( ℕ0m 1o ) ∈ V
8 6 7 elmap ( 𝐹 ∈ ( 𝐵m ( ℕ0m 1o ) ) ↔ 𝐹 : ( ℕ0m 1o ) ⟶ 𝐵 )
9 4 8 sylibr ( 𝜑𝐹 ∈ ( 𝐵m ( ℕ0m 1o ) ) )
10 df1o2 1o = { ∅ }
11 snfi { ∅ } ∈ Fin
12 10 11 eqeltri 1o ∈ Fin
13 12 a1i ( 𝑓 ∈ ( ℕ0m 1o ) → 1o ∈ Fin )
14 elmapi ( 𝑓 ∈ ( ℕ0m 1o ) → 𝑓 : 1o ⟶ ℕ0 )
15 13 14 fisuppfi ( 𝑓 ∈ ( ℕ0m 1o ) → ( 𝑓 “ ℕ ) ∈ Fin )
16 15 rabeqc { 𝑓 ∈ ( ℕ0m 1o ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = ( ℕ0m 1o )
17 16 oveq2i ( 𝐵m { 𝑓 ∈ ( ℕ0m 1o ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) = ( 𝐵m ( ℕ0m 1o ) )
18 9 17 eleqtrrdi ( 𝜑𝐹 ∈ ( 𝐵m { 𝑓 ∈ ( ℕ0m 1o ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) )
19 eqid ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 )
20 eqid { 𝑓 ∈ ( ℕ0m 1o ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 1o ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
21 eqid ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) )
22 1oex 1o ∈ V
23 22 a1i ( 𝜑 → 1o ∈ V )
24 19 2 20 21 23 psrbas ( 𝜑 → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( 𝐵m { 𝑓 ∈ ( ℕ0m 1o ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) )
25 18 24 eleqtrrd ( 𝜑𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) )
26 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
27 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
28 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
29 27 28 3 ply1bas 𝑃 = ( Base ‘ ( 1o mPoly 𝑅 ) )
30 26 19 21 1 29 mplelbas ( 𝐹𝑃 ↔ ( 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ∧ 𝐹 finSupp 0 ) )
31 25 5 30 sylanbrc ( 𝜑𝐹𝑃 )