Metamath Proof Explorer


Theorem fply1

Description: Conditions for a function to be an univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023)

Ref Expression
Hypotheses fply1.1 0 ˙ = 0 R
fply1.2 B = Base R
fply1.3 P = Base Poly 1 R
fply1.4 φ F : 0 1 𝑜 B
fply1.5 φ finSupp 0 ˙ F
Assertion fply1 φ F P

Proof

Step Hyp Ref Expression
1 fply1.1 0 ˙ = 0 R
2 fply1.2 B = Base R
3 fply1.3 P = Base Poly 1 R
4 fply1.4 φ F : 0 1 𝑜 B
5 fply1.5 φ finSupp 0 ˙ F
6 2 fvexi B V
7 ovex 0 1 𝑜 V
8 6 7 elmap F B 0 1 𝑜 F : 0 1 𝑜 B
9 4 8 sylibr φ F B 0 1 𝑜
10 df1o2 1 𝑜 =
11 snfi Fin
12 10 11 eqeltri 1 𝑜 Fin
13 12 a1i f 0 1 𝑜 1 𝑜 Fin
14 elmapi f 0 1 𝑜 f : 1 𝑜 0
15 13 14 fisuppfi f 0 1 𝑜 f -1 Fin
16 15 rabeqc f 0 1 𝑜 | f -1 Fin = 0 1 𝑜
17 16 oveq2i B f 0 1 𝑜 | f -1 Fin = B 0 1 𝑜
18 9 17 eleqtrrdi φ F B f 0 1 𝑜 | f -1 Fin
19 eqid 1 𝑜 mPwSer R = 1 𝑜 mPwSer R
20 eqid f 0 1 𝑜 | f -1 Fin = f 0 1 𝑜 | f -1 Fin
21 eqid Base 1 𝑜 mPwSer R = Base 1 𝑜 mPwSer R
22 1oex 1 𝑜 V
23 22 a1i φ 1 𝑜 V
24 19 2 20 21 23 psrbas φ Base 1 𝑜 mPwSer R = B f 0 1 𝑜 | f -1 Fin
25 18 24 eleqtrrd φ F Base 1 𝑜 mPwSer R
26 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
27 eqid Poly 1 R = Poly 1 R
28 eqid PwSer 1 R = PwSer 1 R
29 27 28 3 ply1bas P = Base 1 𝑜 mPoly R
30 26 19 21 1 29 mplelbas F P F Base 1 𝑜 mPwSer R finSupp 0 ˙ F
31 25 5 30 sylanbrc φ F P