Step |
Hyp |
Ref |
Expression |
1 |
|
fply1.1 |
|- .0. = ( 0g ` R ) |
2 |
|
fply1.2 |
|- B = ( Base ` R ) |
3 |
|
fply1.3 |
|- P = ( Base ` ( Poly1 ` R ) ) |
4 |
|
fply1.4 |
|- ( ph -> F : ( NN0 ^m 1o ) --> B ) |
5 |
|
fply1.5 |
|- ( ph -> F finSupp .0. ) |
6 |
2
|
fvexi |
|- B e. _V |
7 |
|
ovex |
|- ( NN0 ^m 1o ) e. _V |
8 |
6 7
|
elmap |
|- ( F e. ( B ^m ( NN0 ^m 1o ) ) <-> F : ( NN0 ^m 1o ) --> B ) |
9 |
4 8
|
sylibr |
|- ( ph -> F e. ( B ^m ( NN0 ^m 1o ) ) ) |
10 |
|
df1o2 |
|- 1o = { (/) } |
11 |
|
snfi |
|- { (/) } e. Fin |
12 |
10 11
|
eqeltri |
|- 1o e. Fin |
13 |
12
|
a1i |
|- ( f e. ( NN0 ^m 1o ) -> 1o e. Fin ) |
14 |
|
elmapi |
|- ( f e. ( NN0 ^m 1o ) -> f : 1o --> NN0 ) |
15 |
13 14
|
fisuppfi |
|- ( f e. ( NN0 ^m 1o ) -> ( `' f " NN ) e. Fin ) |
16 |
15
|
rabeqc |
|- { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } = ( NN0 ^m 1o ) |
17 |
16
|
oveq2i |
|- ( B ^m { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } ) = ( B ^m ( NN0 ^m 1o ) ) |
18 |
9 17
|
eleqtrrdi |
|- ( ph -> F e. ( B ^m { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } ) ) |
19 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
20 |
|
eqid |
|- { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } |
21 |
|
eqid |
|- ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) |
22 |
|
1oex |
|- 1o e. _V |
23 |
22
|
a1i |
|- ( ph -> 1o e. _V ) |
24 |
19 2 20 21 23
|
psrbas |
|- ( ph -> ( Base ` ( 1o mPwSer R ) ) = ( B ^m { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } ) ) |
25 |
18 24
|
eleqtrrd |
|- ( ph -> F e. ( Base ` ( 1o mPwSer R ) ) ) |
26 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
27 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
28 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
29 |
27 28 3
|
ply1bas |
|- P = ( Base ` ( 1o mPoly R ) ) |
30 |
26 19 21 1 29
|
mplelbas |
|- ( F e. P <-> ( F e. ( Base ` ( 1o mPwSer R ) ) /\ F finSupp .0. ) ) |
31 |
25 5 30
|
sylanbrc |
|- ( ph -> F e. P ) |