| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1lvec.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1lvec.r |
|- ( ph -> R e. DivRing ) |
| 3 |
2
|
drngringd |
|- ( ph -> R e. Ring ) |
| 4 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 5 |
3 4
|
syl |
|- ( ph -> P e. LMod ) |
| 6 |
1
|
ply1sca |
|- ( R e. DivRing -> R = ( Scalar ` P ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 8 |
7 2
|
eqeltrrd |
|- ( ph -> ( Scalar ` P ) e. DivRing ) |
| 9 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 10 |
9
|
islvec |
|- ( P e. LVec <-> ( P e. LMod /\ ( Scalar ` P ) e. DivRing ) ) |
| 11 |
5 8 10
|
sylanbrc |
|- ( ph -> P e. LVec ) |