Metamath Proof Explorer


Theorem ply1lvec

Description: In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025)

Ref Expression
Hypotheses ply1lvec.p
|- P = ( Poly1 ` R )
ply1lvec.r
|- ( ph -> R e. DivRing )
Assertion ply1lvec
|- ( ph -> P e. LVec )

Proof

Step Hyp Ref Expression
1 ply1lvec.p
 |-  P = ( Poly1 ` R )
2 ply1lvec.r
 |-  ( ph -> R e. DivRing )
3 2 drngringd
 |-  ( ph -> R e. Ring )
4 1 ply1lmod
 |-  ( R e. Ring -> P e. LMod )
5 3 4 syl
 |-  ( ph -> P e. LMod )
6 1 ply1sca
 |-  ( R e. DivRing -> R = ( Scalar ` P ) )
7 2 6 syl
 |-  ( ph -> R = ( Scalar ` P ) )
8 7 2 eqeltrrd
 |-  ( ph -> ( Scalar ` P ) e. DivRing )
9 eqid
 |-  ( Scalar ` P ) = ( Scalar ` P )
10 9 islvec
 |-  ( P e. LVec <-> ( P e. LMod /\ ( Scalar ` P ) e. DivRing ) )
11 5 8 10 sylanbrc
 |-  ( ph -> P e. LVec )