Description: In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1lvec.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1lvec.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| Assertion | ply1lvec | ⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1lvec.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1lvec.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 3 | 2 | drngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 6 | 1 | ply1sca | ⊢ ( 𝑅 ∈ DivRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 8 | 7 2 | eqeltrrd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑃 ) ∈ DivRing ) |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 10 | 9 | islvec | ⊢ ( 𝑃 ∈ LVec ↔ ( 𝑃 ∈ LMod ∧ ( Scalar ‘ 𝑃 ) ∈ DivRing ) ) |
| 11 | 5 8 10 | sylanbrc | ⊢ ( 𝜑 → 𝑃 ∈ LVec ) |