Description: There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ringmon1p.1 | |
|
0ringmon1p.2 | |
||
0ringmon1p.3 | |
||
0ringmon1p.4 | |
||
Assertion | 0ringmon1p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ringmon1p.1 | |
|
2 | 0ringmon1p.2 | |
|
3 | 0ringmon1p.3 | |
|
4 | 0ringmon1p.4 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 5 6 7 8 1 9 | ismon1p | |
11 | 10 | biimpi | |
12 | 11 | adantl | |
13 | 12 | simp3d | |
14 | 3 | adantr | |
15 | 12 | simp1d | |
16 | 12 | simp2d | |
17 | eqid | |
|
18 | eqid | |
|
19 | 8 5 7 6 17 18 | deg1ldg | |
20 | 14 15 16 19 | syl3anc | |
21 | 2 17 9 | 0ring01eq | |
22 | 3 4 21 | syl2anc | |
23 | 22 | adantr | |
24 | 20 23 | neeqtrd | |
25 | 24 | neneqd | |
26 | 13 25 | pm2.65da | |
27 | 26 | eq0rdv | |