| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply.1 |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ressply.2 |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
ressply.3 |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
| 4 |
|
ressply.4 |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
ressply.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
ressply1mon1p.m |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
| 7 |
|
ressply1mon1p.n |
⊢ 𝑁 = ( Monic1p ‘ 𝐻 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 10 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 12 |
1 8 9 10 6 11
|
ismon1p |
⊢ ( 𝑝 ∈ 𝑀 ↔ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 13 |
12
|
anbi2i |
⊢ ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀 ) ↔ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ) |
| 14 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
| 15 |
1 2 3 4 5 14
|
ressply1bas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 16 |
14 8
|
ressbasss |
⊢ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ⊆ ( Base ‘ 𝑆 ) |
| 17 |
15 16
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 18 |
17
|
sseld |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝐵 → 𝑝 ∈ ( Base ‘ 𝑆 ) ) ) |
| 19 |
18
|
pm4.71d |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝐵 ↔ ( 𝑝 ∈ 𝐵 ∧ 𝑝 ∈ ( Base ‘ 𝑆 ) ) ) ) |
| 20 |
19
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ↔ ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ) ) |
| 21 |
|
13an22anass |
⊢ ( ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ↔ ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ) |
| 22 |
20 21
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ↔ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ) ) |
| 23 |
1 2 3 4 5 9
|
ressply10g |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 24 |
23
|
neeq2d |
⊢ ( 𝜑 → ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ↔ 𝑝 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ↔ 𝑝 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 28 |
2 10 3 4 26 27
|
ressdeg1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) = ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) ) |
| 30 |
2 11
|
subrg1 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝐻 ) ) |
| 31 |
5 30
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝐻 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝐻 ) ) |
| 33 |
29 32
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ↔ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ) |
| 34 |
25 33
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ↔ ( 𝑝 ≠ ( 0g ‘ 𝑈 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ) ) |
| 35 |
34
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ↔ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ≠ ( 0g ‘ 𝑈 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ) ) ) |
| 36 |
|
3anass |
⊢ ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ≠ ( 0g ‘ 𝑈 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ↔ ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ≠ ( 0g ‘ 𝑈 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ) ) |
| 37 |
35 36
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ↔ ( 𝑝 ∈ 𝐵 ∧ 𝑝 ≠ ( 0g ‘ 𝑈 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ) ) |
| 38 |
22 37
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝐵 ∧ ( 𝑝 ∈ ( Base ‘ 𝑆 ) ∧ 𝑝 ≠ ( 0g ‘ 𝑆 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝑅 ) ) ) ↔ ( 𝑝 ∈ 𝐵 ∧ 𝑝 ≠ ( 0g ‘ 𝑈 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ) ) |
| 39 |
13 38
|
bitr2id |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝐵 ∧ 𝑝 ≠ ( 0g ‘ 𝑈 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ↔ ( 𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀 ) ) ) |
| 40 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 41 |
|
eqid |
⊢ ( deg1 ‘ 𝐻 ) = ( deg1 ‘ 𝐻 ) |
| 42 |
|
eqid |
⊢ ( 1r ‘ 𝐻 ) = ( 1r ‘ 𝐻 ) |
| 43 |
3 4 40 41 7 42
|
ismon1p |
⊢ ( 𝑝 ∈ 𝑁 ↔ ( 𝑝 ∈ 𝐵 ∧ 𝑝 ≠ ( 0g ‘ 𝑈 ) ∧ ( ( coe1 ‘ 𝑝 ) ‘ ( ( deg1 ‘ 𝐻 ) ‘ 𝑝 ) ) = ( 1r ‘ 𝐻 ) ) ) |
| 44 |
|
elin |
⊢ ( 𝑝 ∈ ( 𝐵 ∩ 𝑀 ) ↔ ( 𝑝 ∈ 𝐵 ∧ 𝑝 ∈ 𝑀 ) ) |
| 45 |
39 43 44
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝑁 ↔ 𝑝 ∈ ( 𝐵 ∩ 𝑀 ) ) ) |
| 46 |
45
|
eqrdv |
⊢ ( 𝜑 → 𝑁 = ( 𝐵 ∩ 𝑀 ) ) |