Step |
Hyp |
Ref |
Expression |
1 |
|
irngval.o |
|- O = ( R evalSub1 S ) |
2 |
|
irngval.u |
|- U = ( R |`s S ) |
3 |
|
irngval.b |
|- B = ( Base ` R ) |
4 |
|
irngval.0 |
|- .0. = ( 0g ` R ) |
5 |
|
elirng.r |
|- ( ph -> R e. CRing ) |
6 |
|
elirng.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
7 |
1 2 3 4 5 6
|
elirng |
|- ( ph -> ( x e. ( R IntgRing S ) <-> ( x e. B /\ E. f e. ( Monic1p ` U ) ( ( O ` f ) ` x ) = .0. ) ) ) |
8 |
|
simpl |
|- ( ( x e. B /\ E. f e. ( Monic1p ` U ) ( ( O ` f ) ` x ) = .0. ) -> x e. B ) |
9 |
7 8
|
syl6bi |
|- ( ph -> ( x e. ( R IntgRing S ) -> x e. B ) ) |
10 |
9
|
ssrdv |
|- ( ph -> ( R IntgRing S ) C_ B ) |