Metamath Proof Explorer


Theorem minplynzm1p

Description: If a minimal polynomial is nonzero, then it is monic. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses minplynzm1p.b B = Base E
minplynzm1p.z Z = 0 Poly 1 E
minplynzm1p.e φ E Field
minplynzm1p.f φ F SubDRing E
minplynzm1p.m M = E minPoly F
minplynzm1p.a φ A B
minplynzm1p.1 φ M A Z
minplynzm1p.u U = Monic 1p E 𝑠 F
Assertion minplynzm1p φ M A U

Proof

Step Hyp Ref Expression
1 minplynzm1p.b B = Base E
2 minplynzm1p.z Z = 0 Poly 1 E
3 minplynzm1p.e φ E Field
4 minplynzm1p.f φ F SubDRing E
5 minplynzm1p.m M = E minPoly F
6 minplynzm1p.a φ A B
7 minplynzm1p.1 φ M A Z
8 minplynzm1p.u U = Monic 1p E 𝑠 F
9 eqid E evalSub 1 F = E evalSub 1 F
10 eqid Poly 1 E 𝑠 F = Poly 1 E 𝑠 F
11 eqid 0 E = 0 E
12 eqid q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
13 eqid RSpan Poly 1 E 𝑠 F = RSpan Poly 1 E 𝑠 F
14 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
15 9 10 1 3 4 6 11 12 13 14 5 minplyval φ M A = idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
16 eqid E 𝑠 F = E 𝑠 F
17 16 sdrgdrng F SubDRing E E 𝑠 F DivRing
18 4 17 syl φ E 𝑠 F DivRing
19 3 fldcrngd φ E CRing
20 sdrgsubrg F SubDRing E F SubRing E
21 4 20 syl φ F SubRing E
22 9 10 1 19 21 6 11 12 ply1annidl φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E LIdeal Poly 1 E 𝑠 F
23 15 sneqd φ M A = idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
24 23 fveq2d φ RSpan Poly 1 E 𝑠 F M A = RSpan Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
25 9 10 1 3 4 6 11 12 13 14 ply1annig1p φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = RSpan Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
26 24 25 eqtr4d φ RSpan Poly 1 E 𝑠 F M A = q dom E evalSub 1 F | E evalSub 1 F q A = 0 E
27 18 drngringd φ E 𝑠 F Ring
28 10 ply1ring E 𝑠 F Ring Poly 1 E 𝑠 F Ring
29 27 28 syl φ Poly 1 E 𝑠 F Ring
30 9 10 1 3 4 6 11 12 13 14 5 minplycl φ M A Base Poly 1 E 𝑠 F
31 eqid Poly 1 E = Poly 1 E
32 eqid Base Poly 1 E 𝑠 F = Base Poly 1 E 𝑠 F
33 31 16 10 32 21 2 ressply10g φ Z = 0 Poly 1 E 𝑠 F
34 7 33 neeqtrd φ M A 0 Poly 1 E 𝑠 F
35 eqid 0 Poly 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
36 32 35 13 pidlnz Poly 1 E 𝑠 F Ring M A Base Poly 1 E 𝑠 F M A 0 Poly 1 E 𝑠 F RSpan Poly 1 E 𝑠 F M A 0 Poly 1 E 𝑠 F
37 29 30 34 36 syl3anc φ RSpan Poly 1 E 𝑠 F M A 0 Poly 1 E 𝑠 F
38 26 37 eqnetrrd φ q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F
39 eqid LIdeal Poly 1 E 𝑠 F = LIdeal Poly 1 E 𝑠 F
40 eqid deg 1 E 𝑠 F = deg 1 E 𝑠 F
41 10 14 35 39 40 8 ig1pval3 E 𝑠 F DivRing q dom E evalSub 1 F | E evalSub 1 F q A = 0 E LIdeal Poly 1 E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E q dom E evalSub 1 F | E evalSub 1 F q A = 0 E idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E U deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = inf deg 1 E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F <
42 18 22 38 41 syl3anc φ idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E q dom E evalSub 1 F | E evalSub 1 F q A = 0 E idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E U deg 1 E 𝑠 F idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E = inf deg 1 E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E 0 Poly 1 E 𝑠 F <
43 42 simp2d φ idlGen 1p E 𝑠 F q dom E evalSub 1 F | E evalSub 1 F q A = 0 E U
44 15 43 eqeltrd φ M A U