Metamath Proof Explorer


Theorem minplynzm1p

Description: If a minimal polynomial is nonzero, then it is monic. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses minplynzm1p.b 𝐵 = ( Base ‘ 𝐸 )
minplynzm1p.z 𝑍 = ( 0g ‘ ( Poly1𝐸 ) )
minplynzm1p.e ( 𝜑𝐸 ∈ Field )
minplynzm1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
minplynzm1p.m 𝑀 = ( 𝐸 minPoly 𝐹 )
minplynzm1p.a ( 𝜑𝐴𝐵 )
minplynzm1p.1 ( 𝜑 → ( 𝑀𝐴 ) ≠ 𝑍 )
minplynzm1p.u 𝑈 = ( Monic1p ‘ ( 𝐸s 𝐹 ) )
Assertion minplynzm1p ( 𝜑 → ( 𝑀𝐴 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 minplynzm1p.b 𝐵 = ( Base ‘ 𝐸 )
2 minplynzm1p.z 𝑍 = ( 0g ‘ ( Poly1𝐸 ) )
3 minplynzm1p.e ( 𝜑𝐸 ∈ Field )
4 minplynzm1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
5 minplynzm1p.m 𝑀 = ( 𝐸 minPoly 𝐹 )
6 minplynzm1p.a ( 𝜑𝐴𝐵 )
7 minplynzm1p.1 ( 𝜑 → ( 𝑀𝐴 ) ≠ 𝑍 )
8 minplynzm1p.u 𝑈 = ( Monic1p ‘ ( 𝐸s 𝐹 ) )
9 eqid ( 𝐸 evalSub1 𝐹 ) = ( 𝐸 evalSub1 𝐹 )
10 eqid ( Poly1 ‘ ( 𝐸s 𝐹 ) ) = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
11 eqid ( 0g𝐸 ) = ( 0g𝐸 )
12 eqid { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) }
13 eqid ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) = ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) )
14 eqid ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
15 9 10 1 3 4 6 11 12 13 14 5 minplyval ( 𝜑 → ( 𝑀𝐴 ) = ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) )
16 eqid ( 𝐸s 𝐹 ) = ( 𝐸s 𝐹 )
17 16 sdrgdrng ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸s 𝐹 ) ∈ DivRing )
18 4 17 syl ( 𝜑 → ( 𝐸s 𝐹 ) ∈ DivRing )
19 3 fldcrngd ( 𝜑𝐸 ∈ CRing )
20 sdrgsubrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) )
21 4 20 syl ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
22 9 10 1 19 21 6 11 12 ply1annidl ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
23 15 sneqd ( 𝜑 → { ( 𝑀𝐴 ) } = { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } )
24 23 fveq2d ( 𝜑 → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( 𝑀𝐴 ) } ) = ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } ) )
25 9 10 1 3 4 6 11 12 13 14 ply1annig1p ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } ) )
26 24 25 eqtr4d ( 𝜑 → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( 𝑀𝐴 ) } ) = { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } )
27 18 drngringd ( 𝜑 → ( 𝐸s 𝐹 ) ∈ Ring )
28 10 ply1ring ( ( 𝐸s 𝐹 ) ∈ Ring → ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ∈ Ring )
29 27 28 syl ( 𝜑 → ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ∈ Ring )
30 9 10 1 3 4 6 11 12 13 14 5 minplycl ( 𝜑 → ( 𝑀𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
31 eqid ( Poly1𝐸 ) = ( Poly1𝐸 )
32 eqid ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) )
33 31 16 10 32 21 2 ressply10g ( 𝜑𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
34 7 33 neeqtrd ( 𝜑 → ( 𝑀𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
35 eqid ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) )
36 32 35 13 pidlnz ( ( ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ∈ Ring ∧ ( 𝑀𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ∧ ( 𝑀𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ) → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( 𝑀𝐴 ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
37 29 30 34 36 syl3anc ( 𝜑 → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( 𝑀𝐴 ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
38 26 37 eqnetrrd ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
39 eqid ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) = ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) )
40 eqid ( deg1 ‘ ( 𝐸s 𝐹 ) ) = ( deg1 ‘ ( 𝐸s 𝐹 ) )
41 10 14 35 39 40 8 ig1pval3 ( ( ( 𝐸s 𝐹 ) ∈ DivRing ∧ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ∧ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } ) → ( ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∧ ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ 𝑈 ∧ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ) = inf ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) “ ( { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∖ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } ) ) , ℝ , < ) ) )
42 18 22 38 41 syl3anc ( 𝜑 → ( ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∧ ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ 𝑈 ∧ ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ) = inf ( ( ( deg1 ‘ ( 𝐸s 𝐹 ) ) “ ( { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∖ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } ) ) , ℝ , < ) ) )
43 42 simp2d ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ 𝑈 )
44 15 43 eqeltrd ( 𝜑 → ( 𝑀𝐴 ) ∈ 𝑈 )