| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minplynzm1p.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 2 |
|
minplynzm1p.z |
⊢ 𝑍 = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 3 |
|
minplynzm1p.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 4 |
|
minplynzm1p.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 5 |
|
minplynzm1p.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
| 6 |
|
minplynzm1p.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
minplynzm1p.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |
| 8 |
|
minplynzm1p.u |
⊢ 𝑈 = ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 9 |
|
eqid |
⊢ ( 𝐸 evalSub1 𝐹 ) = ( 𝐸 evalSub1 𝐹 ) |
| 10 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 12 |
|
eqid |
⊢ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
| 13 |
|
eqid |
⊢ ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 14 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 15 |
9 10 1 3 4 6 11 12 13 14 5
|
minplyval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) |
| 16 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 17 |
16
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 18 |
4 17
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 19 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 20 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 21 |
4 20
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 22 |
9 10 1 19 21 6 11 12
|
ply1annidl |
⊢ ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 23 |
15
|
sneqd |
⊢ ( 𝜑 → { ( 𝑀 ‘ 𝐴 ) } = { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝜑 → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) = ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ) |
| 25 |
9 10 1 3 4 6 11 12 13 14
|
ply1annig1p |
⊢ ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ) |
| 26 |
24 25
|
eqtr4d |
⊢ ( 𝜑 → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) = { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 27 |
18
|
drngringd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 28 |
10
|
ply1ring |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Ring → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ) |
| 30 |
9 10 1 3 4 6 11 12 13 14 5
|
minplycl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 31 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 32 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 33 |
31 16 10 32 21 2
|
ressply10g |
⊢ ( 𝜑 → 𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 34 |
7 33
|
neeqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 35 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 36 |
32 35 13
|
pidlnz |
⊢ ( ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 37 |
29 30 34 36
|
syl3anc |
⊢ ( 𝜑 → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 38 |
26 37
|
eqnetrrd |
⊢ ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 39 |
|
eqid |
⊢ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 40 |
|
eqid |
⊢ ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 41 |
10 14 35 39 40 8
|
ig1pval3 |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ DivRing ∧ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) → ( ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∧ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ 𝑈 ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) = inf ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) “ ( { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∖ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) ) , ℝ , < ) ) ) |
| 42 |
18 22 38 41
|
syl3anc |
⊢ ( 𝜑 → ( ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∧ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ 𝑈 ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) = inf ( ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) “ ( { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∖ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) ) , ℝ , < ) ) ) |
| 43 |
42
|
simp2d |
⊢ ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ 𝑈 ) |
| 44 |
15 43
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑈 ) |