| Step |
Hyp |
Ref |
Expression |
| 1 |
|
minplyelirng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
minplyelirng.m |
⊢ 𝑀 = ( 𝑅 minPoly 𝑆 ) |
| 3 |
|
minplyelirng.d |
⊢ 𝐷 = ( deg1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 4 |
|
minplyelirng.r |
⊢ ( 𝜑 → 𝑅 ∈ Field ) |
| 5 |
|
minplyelirng.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ) |
| 6 |
|
minplyelirng.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
minplyelirng.1 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑀 ‘ 𝐴 ) → ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) = ( ( 𝑅 evalSub1 𝑆 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 9 |
8
|
fveq1d |
⊢ ( 𝑚 = ( 𝑀 ‘ 𝐴 ) → ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) ‘ 𝐴 ) = ( ( ( 𝑅 evalSub1 𝑆 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑚 = ( 𝑀 ‘ 𝐴 ) → ( ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) ‘ 𝐴 ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( 𝑅 evalSub1 𝑆 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = ( 0g ‘ 𝑅 ) ) ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) = ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) |
| 12 |
|
sdrgsubrg |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 14 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
| 15 |
14
|
subrgring |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 16 |
13 15
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 17 |
|
eqid |
⊢ ( 𝑅 evalSub1 𝑆 ) = ( 𝑅 evalSub1 𝑆 ) |
| 18 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 20 |
|
eqid |
⊢ { 𝑞 ∈ dom ( 𝑅 evalSub1 𝑆 ) ∣ ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝑅 ) } = { 𝑞 ∈ dom ( 𝑅 evalSub1 𝑆 ) ∣ ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝑅 ) } |
| 21 |
|
eqid |
⊢ ( RSpan ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( RSpan ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 22 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝑅 ↾s 𝑆 ) ) = ( idlGen1p ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 23 |
17 18 1 4 5 6 19 20 21 22 2
|
minplycl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 25 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 26 |
3 18 24 25
|
deg1nn0clb |
⊢ ( ( ( 𝑅 ↾s 𝑆 ) ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) → ( ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ↔ ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) ) |
| 27 |
26
|
biimpar |
⊢ ( ( ( ( 𝑅 ↾s 𝑆 ) ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) ∧ ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) → ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
| 28 |
16 23 7 27
|
syl21anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
| 29 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 30 |
29 14 18 25 13 11
|
ressply10g |
⊢ ( 𝜑 → ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
| 31 |
28 30
|
neeqtrrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 32 |
|
eqid |
⊢ ( Monic1p ‘ ( 𝑅 ↾s 𝑆 ) ) = ( Monic1p ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 33 |
1 11 4 5 2 6 31 32
|
minplynzm1p |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 34 |
17 18 1 4 5 6 19 2
|
minplyann |
⊢ ( 𝜑 → ( ( ( 𝑅 evalSub1 𝑆 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = ( 0g ‘ 𝑅 ) ) |
| 35 |
10 33 34
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ( Monic1p ‘ ( 𝑅 ↾s 𝑆 ) ) ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) ‘ 𝐴 ) = ( 0g ‘ 𝑅 ) ) |
| 36 |
4
|
fldcrngd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 37 |
17 14 1 19 36 13
|
elirng |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑚 ∈ ( Monic1p ‘ ( 𝑅 ↾s 𝑆 ) ) ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) ‘ 𝐴 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 38 |
6 35 37
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅 IntgRing 𝑆 ) ) |