Metamath Proof Explorer


Theorem minplyelirng

Description: If the minimial polynomial F of an element X of a field R has nonnegative degree, then X is integral. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses minplyelirng.b 𝐵 = ( Base ‘ 𝑅 )
minplyelirng.m 𝑀 = ( 𝑅 minPoly 𝑆 )
minplyelirng.d 𝐷 = ( deg1 ‘ ( 𝑅s 𝑆 ) )
minplyelirng.r ( 𝜑𝑅 ∈ Field )
minplyelirng.s ( 𝜑𝑆 ∈ ( SubDRing ‘ 𝑅 ) )
minplyelirng.a ( 𝜑𝐴𝐵 )
minplyelirng.1 ( 𝜑 → ( 𝐷 ‘ ( 𝑀𝐴 ) ) ∈ ℕ0 )
Assertion minplyelirng ( 𝜑𝐴 ∈ ( 𝑅 IntgRing 𝑆 ) )

Proof

Step Hyp Ref Expression
1 minplyelirng.b 𝐵 = ( Base ‘ 𝑅 )
2 minplyelirng.m 𝑀 = ( 𝑅 minPoly 𝑆 )
3 minplyelirng.d 𝐷 = ( deg1 ‘ ( 𝑅s 𝑆 ) )
4 minplyelirng.r ( 𝜑𝑅 ∈ Field )
5 minplyelirng.s ( 𝜑𝑆 ∈ ( SubDRing ‘ 𝑅 ) )
6 minplyelirng.a ( 𝜑𝐴𝐵 )
7 minplyelirng.1 ( 𝜑 → ( 𝐷 ‘ ( 𝑀𝐴 ) ) ∈ ℕ0 )
8 fveq2 ( 𝑚 = ( 𝑀𝐴 ) → ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) = ( ( 𝑅 evalSub1 𝑆 ) ‘ ( 𝑀𝐴 ) ) )
9 8 fveq1d ( 𝑚 = ( 𝑀𝐴 ) → ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) ‘ 𝐴 ) = ( ( ( 𝑅 evalSub1 𝑆 ) ‘ ( 𝑀𝐴 ) ) ‘ 𝐴 ) )
10 9 eqeq1d ( 𝑚 = ( 𝑀𝐴 ) → ( ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) ‘ 𝐴 ) = ( 0g𝑅 ) ↔ ( ( ( 𝑅 evalSub1 𝑆 ) ‘ ( 𝑀𝐴 ) ) ‘ 𝐴 ) = ( 0g𝑅 ) ) )
11 eqid ( 0g ‘ ( Poly1𝑅 ) ) = ( 0g ‘ ( Poly1𝑅 ) )
12 sdrgsubrg ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) )
13 5 12 syl ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
14 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
15 14 subrgring ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅s 𝑆 ) ∈ Ring )
16 13 15 syl ( 𝜑 → ( 𝑅s 𝑆 ) ∈ Ring )
17 eqid ( 𝑅 evalSub1 𝑆 ) = ( 𝑅 evalSub1 𝑆 )
18 eqid ( Poly1 ‘ ( 𝑅s 𝑆 ) ) = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
19 eqid ( 0g𝑅 ) = ( 0g𝑅 )
20 eqid { 𝑞 ∈ dom ( 𝑅 evalSub1 𝑆 ) ∣ ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝑅 ) } = { 𝑞 ∈ dom ( 𝑅 evalSub1 𝑆 ) ∣ ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝑅 ) }
21 eqid ( RSpan ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) = ( RSpan ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) )
22 eqid ( idlGen1p ‘ ( 𝑅s 𝑆 ) ) = ( idlGen1p ‘ ( 𝑅s 𝑆 ) )
23 17 18 1 4 5 6 19 20 21 22 2 minplycl ( 𝜑 → ( 𝑀𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) )
24 eqid ( 0g ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) )
25 eqid ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) )
26 3 18 24 25 deg1nn0clb ( ( ( 𝑅s 𝑆 ) ∈ Ring ∧ ( 𝑀𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) ) → ( ( 𝑀𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) ↔ ( 𝐷 ‘ ( 𝑀𝐴 ) ) ∈ ℕ0 ) )
27 26 biimpar ( ( ( ( 𝑅s 𝑆 ) ∈ Ring ∧ ( 𝑀𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) ) ∧ ( 𝐷 ‘ ( 𝑀𝐴 ) ) ∈ ℕ0 ) → ( 𝑀𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) )
28 16 23 7 27 syl21anc ( 𝜑 → ( 𝑀𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) )
29 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
30 29 14 18 25 13 11 ressply10g ( 𝜑 → ( 0g ‘ ( Poly1𝑅 ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝑅s 𝑆 ) ) ) )
31 28 30 neeqtrrd ( 𝜑 → ( 𝑀𝐴 ) ≠ ( 0g ‘ ( Poly1𝑅 ) ) )
32 eqid ( Monic1p ‘ ( 𝑅s 𝑆 ) ) = ( Monic1p ‘ ( 𝑅s 𝑆 ) )
33 1 11 4 5 2 6 31 32 minplynzm1p ( 𝜑 → ( 𝑀𝐴 ) ∈ ( Monic1p ‘ ( 𝑅s 𝑆 ) ) )
34 17 18 1 4 5 6 19 2 minplyann ( 𝜑 → ( ( ( 𝑅 evalSub1 𝑆 ) ‘ ( 𝑀𝐴 ) ) ‘ 𝐴 ) = ( 0g𝑅 ) )
35 10 33 34 rspcedvdw ( 𝜑 → ∃ 𝑚 ∈ ( Monic1p ‘ ( 𝑅s 𝑆 ) ) ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) ‘ 𝐴 ) = ( 0g𝑅 ) )
36 4 fldcrngd ( 𝜑𝑅 ∈ CRing )
37 17 14 1 19 36 13 elirng ( 𝜑 → ( 𝐴 ∈ ( 𝑅 IntgRing 𝑆 ) ↔ ( 𝐴𝐵 ∧ ∃ 𝑚 ∈ ( Monic1p ‘ ( 𝑅s 𝑆 ) ) ( ( ( 𝑅 evalSub1 𝑆 ) ‘ 𝑚 ) ‘ 𝐴 ) = ( 0g𝑅 ) ) ) )
38 6 35 37 mpbir2and ( 𝜑𝐴 ∈ ( 𝑅 IntgRing 𝑆 ) )