Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
2 |
|
ply1annig1p.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
3 |
|
ply1annig1p.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
4 |
|
ply1annig1p.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
5 |
|
ply1annig1p.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
6 |
|
ply1annig1p.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
7 |
|
minplyann.1 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
8 |
|
minplyann.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
9 |
|
eqid |
⊢ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } |
10 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
11 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
12 |
1 2 3 4 5 6 7 9 10 11 8
|
minplyval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) ) |
13 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
14 |
13
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
16 |
4
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
17 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
19 |
1 2 3 16 18 6 7 9
|
ply1annidl |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ∈ ( LIdeal ‘ 𝑃 ) ) |
20 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
21 |
2 11 20
|
ig1pcl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ DivRing ∧ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ∈ ( LIdeal ‘ 𝑃 ) ) → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
22 |
15 19 21
|
syl2anc |
⊢ ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
23 |
12 22
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
24 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝑀 ‘ 𝐴 ) → ( 𝑂 ‘ 𝑞 ) = ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
25 |
24
|
fveq1d |
⊢ ( 𝑞 = ( 𝑀 ‘ 𝐴 ) → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) ) |
26 |
25
|
eqeq1d |
⊢ ( 𝑞 = ( 𝑀 ‘ 𝐴 ) → ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 ↔ ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = 0 ) ) |
27 |
26
|
elrab |
⊢ ( ( 𝑀 ‘ 𝐴 ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ↔ ( ( 𝑀 ‘ 𝐴 ) ∈ dom 𝑂 ∧ ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = 0 ) ) |
28 |
23 27
|
sylib |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ∈ dom 𝑂 ∧ ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = 0 ) ) |
29 |
28
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = 0 ) |