| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
| 2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
| 3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
| 4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
| 5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
| 7 |
|
minplyann.1 |
|- .0. = ( 0g ` E ) |
| 8 |
|
minplyann.m |
|- M = ( E minPoly F ) |
| 9 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = .0. } = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
| 10 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
| 11 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
| 12 |
1 2 3 4 5 6 7 9 10 11 8
|
minplyval |
|- ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) |
| 13 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
| 14 |
13
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
| 15 |
5 14
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
| 16 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
| 17 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
| 18 |
5 17
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 19 |
1 2 3 16 18 6 7 9
|
ply1annidl |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = .0. } e. ( LIdeal ` P ) ) |
| 20 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
| 21 |
2 11 20
|
ig1pcl |
|- ( ( ( E |`s F ) e. DivRing /\ { q e. dom O | ( ( O ` q ) ` A ) = .0. } e. ( LIdeal ` P ) ) -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
| 22 |
15 19 21
|
syl2anc |
|- ( ph -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
| 23 |
12 22
|
eqeltrd |
|- ( ph -> ( M ` A ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
| 24 |
|
fveq2 |
|- ( q = ( M ` A ) -> ( O ` q ) = ( O ` ( M ` A ) ) ) |
| 25 |
24
|
fveq1d |
|- ( q = ( M ` A ) -> ( ( O ` q ) ` A ) = ( ( O ` ( M ` A ) ) ` A ) ) |
| 26 |
25
|
eqeq1d |
|- ( q = ( M ` A ) -> ( ( ( O ` q ) ` A ) = .0. <-> ( ( O ` ( M ` A ) ) ` A ) = .0. ) ) |
| 27 |
26
|
elrab |
|- ( ( M ` A ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } <-> ( ( M ` A ) e. dom O /\ ( ( O ` ( M ` A ) ) ` A ) = .0. ) ) |
| 28 |
23 27
|
sylib |
|- ( ph -> ( ( M ` A ) e. dom O /\ ( ( O ` ( M ` A ) ) ` A ) = .0. ) ) |
| 29 |
28
|
simprd |
|- ( ph -> ( ( O ` ( M ` A ) ) ` A ) = .0. ) |