Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
7 |
|
minplyann.1 |
|- .0. = ( 0g ` E ) |
8 |
|
minplyann.m |
|- M = ( E minPoly F ) |
9 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = .0. } = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
10 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
11 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
12 |
1 2 3 4 5 6 7 9 10 11 8
|
minplyval |
|- ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) |
13 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
14 |
13
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
15 |
5 14
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
16 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
17 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
18 |
5 17
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
19 |
1 2 3 16 18 6 7 9
|
ply1annidl |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = .0. } e. ( LIdeal ` P ) ) |
20 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
21 |
2 11 20
|
ig1pcl |
|- ( ( ( E |`s F ) e. DivRing /\ { q e. dom O | ( ( O ` q ) ` A ) = .0. } e. ( LIdeal ` P ) ) -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
22 |
15 19 21
|
syl2anc |
|- ( ph -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
23 |
12 22
|
eqeltrd |
|- ( ph -> ( M ` A ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
24 |
|
fveq2 |
|- ( q = ( M ` A ) -> ( O ` q ) = ( O ` ( M ` A ) ) ) |
25 |
24
|
fveq1d |
|- ( q = ( M ` A ) -> ( ( O ` q ) ` A ) = ( ( O ` ( M ` A ) ) ` A ) ) |
26 |
25
|
eqeq1d |
|- ( q = ( M ` A ) -> ( ( ( O ` q ) ` A ) = .0. <-> ( ( O ` ( M ` A ) ) ` A ) = .0. ) ) |
27 |
26
|
elrab |
|- ( ( M ` A ) e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } <-> ( ( M ` A ) e. dom O /\ ( ( O ` ( M ` A ) ) ` A ) = .0. ) ) |
28 |
23 27
|
sylib |
|- ( ph -> ( ( M ` A ) e. dom O /\ ( ( O ` ( M ` A ) ) ` A ) = .0. ) ) |
29 |
28
|
simprd |
|- ( ph -> ( ( O ` ( M ` A ) ) ` A ) = .0. ) |