| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irredminply.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
| 2 |
|
irredminply.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 3 |
|
irredminply.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 4 |
|
irredminply.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 5 |
|
irredminply.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 6 |
|
irredminply.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
irredminply.0 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
| 8 |
|
irredminply.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
| 9 |
|
irredminply.z |
⊢ 𝑍 = ( 0g ‘ 𝑃 ) |
| 10 |
|
irredminply.1 |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) = 0 ) |
| 11 |
|
irredminply.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( Irred ‘ 𝑃 ) ) |
| 12 |
|
irredminply.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 13 |
|
eqid |
⊢ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 14 |
|
eqid |
⊢ ( Unit ‘ 𝑃 ) = ( Unit ‘ 𝑃 ) |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 16 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 17 |
4 5 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 18 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝑂 ‘ 𝑔 ) = ( 𝑂 ‘ 𝐺 ) ) |
| 20 |
19
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = 0 ↔ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) = 0 ) ) |
| 22 |
21 12 10
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑔 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = 0 ) |
| 23 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 24 |
4
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 25 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 26 |
5 25
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 27 |
1 23 3 7 24 26
|
elirng |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑔 ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = 0 ) ) ) |
| 28 |
6 22 27
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 29 |
18 4 5 8 28 13
|
minplym1p |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 30 |
23
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 31 |
5 30
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 32 |
31
|
drngringd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 33 |
|
eqid |
⊢ ( Irred ‘ 𝑃 ) = ( Irred ‘ 𝑃 ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 35 |
33 34
|
irredcl |
⊢ ( 𝐺 ∈ ( Irred ‘ 𝑃 ) → 𝐺 ∈ ( Base ‘ 𝑃 ) ) |
| 36 |
11 35
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ 𝑃 ) ) |
| 37 |
2 34 13
|
mon1pcl |
⊢ ( ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 38 |
29 37
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 39 |
18 4 5 8 28
|
irngnminplynz |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 40 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 41 |
40 23 2 34 26 18
|
ressply10g |
⊢ ( 𝜑 → ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ 𝑃 ) ) |
| 42 |
9 41
|
eqtr4id |
⊢ ( 𝜑 → 𝑍 = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 43 |
39 42
|
neeqtrrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |
| 44 |
|
eqid |
⊢ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 45 |
2 34 9 44
|
drnguc1p |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ DivRing ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 46 |
31 38 43 45
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 47 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) |
| 48 |
|
eqid |
⊢ ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 49 |
|
eqid |
⊢ ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 50 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
| 51 |
48 2 34 49 50 15 44
|
q1peqb |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) < ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) ↔ ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 52 |
51
|
biimpar |
⊢ ( ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) → ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) < ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 53 |
32 36 46 47 52
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) < ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 54 |
53
|
simpld |
⊢ ( 𝜑 → ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 55 |
|
eqid |
⊢ ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 56 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 57 |
2 34 44 48 55 15 56
|
r1pid |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → 𝐺 = ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ( +g ‘ 𝑃 ) ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 58 |
32 36 46 57
|
syl3anc |
⊢ ( 𝜑 → 𝐺 = ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ( +g ‘ 𝑃 ) ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 59 |
55 2 34 44 49
|
r1pdeglt |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) < ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 60 |
32 36 46 59
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) < ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) < ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 62 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 63 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 64 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |
| 65 |
49 2 9 34
|
deg1nn0cl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 66 |
62 63 64 65
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 67 |
66
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℝ ) |
| 68 |
55 2 34 44
|
r1pcl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 69 |
32 36 46 68
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) |
| 72 |
49 2 9 34
|
deg1nn0cl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ Ring ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ∈ ℕ0 ) |
| 73 |
62 70 71 72
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ∈ ℕ0 ) |
| 74 |
73
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 75 |
|
eqid |
⊢ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } |
| 76 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
| 77 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 78 |
1 2 3 4 5 6 7 75 76 77 8
|
minplyval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) ) |
| 79 |
78
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) ) ) |
| 81 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 82 |
81 30
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 83 |
1 2 3 24 26 6 7 75
|
ply1annidl |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ∈ ( LIdeal ‘ 𝑃 ) ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ∈ ( LIdeal ‘ 𝑃 ) ) |
| 85 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) → ( 𝑂 ‘ 𝑞 ) = ( 𝑂 ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 86 |
85
|
fveq1d |
⊢ ( 𝑞 = ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) |
| 87 |
86
|
eqeq1d |
⊢ ( 𝑞 = ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) → ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 ↔ ( ( 𝑂 ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) = 0 ) ) |
| 88 |
1 2 34 24 26
|
evls1dm |
⊢ ( 𝜑 → dom 𝑂 = ( Base ‘ 𝑃 ) ) |
| 89 |
69 88
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ dom 𝑂 ) |
| 90 |
55 2 34 48 15 50
|
r1pval |
⊢ ( ( 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 91 |
36 38 90
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) = ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 92 |
91
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 93 |
92
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) = ( ( 𝑂 ‘ ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) ‘ 𝐴 ) ) |
| 94 |
|
eqid |
⊢ ( -g ‘ 𝐸 ) = ( -g ‘ 𝐸 ) |
| 95 |
2
|
ply1ring |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Ring → 𝑃 ∈ Ring ) |
| 96 |
32 95
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 97 |
34 15 96 54 38
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 98 |
1 3 2 23 34 50 94 24 26 36 97 6
|
evls1subd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) ‘ 𝐴 ) = ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ( -g ‘ 𝐸 ) ( ( 𝑂 ‘ ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) ) |
| 99 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
| 100 |
1 3 2 23 34 15 99 24 26 54 38 6
|
evls1muld |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) = ( ( ( 𝑂 ‘ ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ( .r ‘ 𝐸 ) ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) ) ) |
| 101 |
1 2 3 4 5 6 7 8
|
minplyann |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = 0 ) |
| 102 |
101
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ( .r ‘ 𝐸 ) ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) ) = ( ( ( 𝑂 ‘ ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ( .r ‘ 𝐸 ) 0 ) ) |
| 103 |
24
|
crngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 104 |
1 2 3 34 24 26 6 54
|
evls1fvcl |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ∈ 𝐵 ) |
| 105 |
3 99 7 103 104
|
ringrzd |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ( .r ‘ 𝐸 ) 0 ) = 0 ) |
| 106 |
100 102 105
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) = 0 ) |
| 107 |
10 106
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝐴 ) ( -g ‘ 𝐸 ) ( ( 𝑂 ‘ ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) ) = ( 0 ( -g ‘ 𝐸 ) 0 ) ) |
| 108 |
24
|
crnggrpd |
⊢ ( 𝜑 → 𝐸 ∈ Grp ) |
| 109 |
3 7
|
grpidcl |
⊢ ( 𝐸 ∈ Grp → 0 ∈ 𝐵 ) |
| 110 |
3 7 94
|
grpsubid1 |
⊢ ( ( 𝐸 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 ( -g ‘ 𝐸 ) 0 ) = 0 ) |
| 111 |
108 109 110
|
syl2anc2 |
⊢ ( 𝜑 → ( 0 ( -g ‘ 𝐸 ) 0 ) = 0 ) |
| 112 |
98 107 111
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐺 ( -g ‘ 𝑃 ) ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) ) ‘ 𝐴 ) = 0 ) |
| 113 |
93 112
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ‘ 𝐴 ) = 0 ) |
| 114 |
87 89 113
|
elrabd |
⊢ ( 𝜑 → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
| 116 |
2 77 34 82 84 49 9 115 71
|
ig1pmindeg |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) ) ≤ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 117 |
80 116
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ≤ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 118 |
67 74 117
|
lensymd |
⊢ ( ( 𝜑 ∧ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) → ¬ ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) < ( ( deg1 ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 119 |
61 118
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ) |
| 120 |
|
nne |
⊢ ( ¬ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ≠ 𝑍 ↔ ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) = 𝑍 ) |
| 121 |
119 120
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) = 𝑍 ) |
| 122 |
121
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ( +g ‘ 𝑃 ) ( 𝐺 ( rem1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ) = ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ( +g ‘ 𝑃 ) 𝑍 ) ) |
| 123 |
96
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 124 |
34 56 9 123 97
|
grpridd |
⊢ ( 𝜑 → ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ( +g ‘ 𝑃 ) 𝑍 ) = ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) |
| 125 |
58 122 124
|
3eqtrd |
⊢ ( 𝜑 → 𝐺 = ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ) |
| 126 |
125 11
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Irred ‘ 𝑃 ) ) |
| 127 |
1 2 3 4 5 6 8 9 43
|
minplyirred |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Irred ‘ 𝑃 ) ) |
| 128 |
33 14
|
irrednu |
⊢ ( ( 𝑀 ‘ 𝐴 ) ∈ ( Irred ‘ 𝑃 ) → ¬ ( 𝑀 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑃 ) ) |
| 129 |
127 128
|
syl |
⊢ ( 𝜑 → ¬ ( 𝑀 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑃 ) ) |
| 130 |
33 34 14 15
|
irredmul |
⊢ ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Irred ‘ 𝑃 ) ) → ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑃 ) ∨ ( 𝑀 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑃 ) ) ) |
| 131 |
130
|
orcomd |
⊢ ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Irred ‘ 𝑃 ) ) → ( ( 𝑀 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑃 ) ∨ ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑃 ) ) ) |
| 132 |
131
|
orcanai |
⊢ ( ( ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ( .r ‘ 𝑃 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Irred ‘ 𝑃 ) ) ∧ ¬ ( 𝑀 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑃 ) ) |
| 133 |
54 38 126 129 132
|
syl31anc |
⊢ ( 𝜑 → ( 𝐺 ( quot1p ‘ ( 𝐸 ↾s 𝐹 ) ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( Unit ‘ 𝑃 ) ) |
| 134 |
2 13 14 15 17 12 29 133 125
|
m1pmeq |
⊢ ( 𝜑 → 𝐺 = ( 𝑀 ‘ 𝐴 ) ) |