Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
8 |
2
|
oveq1i |
⊢ ( 𝐿 ↾s 𝐹 ) = ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ↾s 𝐹 ) |
9 |
|
ovex |
⊢ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ V |
10 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
11 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
12 |
6 11
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
13 |
12
|
simp1d |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
14 |
12
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
15 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
16 |
10
|
subgss |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
17 |
14 15 16
|
3syl |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
18 |
|
eqid |
⊢ ( 𝐸 evalSub1 𝐹 ) = ( 𝐸 evalSub1 𝐹 ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
20 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
21 |
18 1 10 19 20 14
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
22 |
21 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
23 |
22
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( Base ‘ 𝐸 ) ) |
24 |
17 23
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( Base ‘ 𝐸 ) ) |
25 |
10 13 24
|
fldgenssid |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
26 |
25
|
unssad |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
27 |
|
ressabs |
⊢ ( ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ V ∧ 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) → ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) ) |
28 |
9 26 27
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) ) |
29 |
8 28
|
eqtrid |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) ) |
30 |
29 1
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐹 ) = 𝐾 ) |