Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
8 |
2
|
oveq1i |
|- ( L |`s F ) = ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) |
9 |
|
ovex |
|- ( E fldGen ( F u. { A } ) ) e. _V |
10 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
11 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
12 |
6 11
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
13 |
12
|
simp1d |
|- ( ph -> E e. DivRing ) |
14 |
12
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
15 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
16 |
10
|
subgss |
|- ( F e. ( SubGrp ` E ) -> F C_ ( Base ` E ) ) |
17 |
14 15 16
|
3syl |
|- ( ph -> F C_ ( Base ` E ) ) |
18 |
|
eqid |
|- ( E evalSub1 F ) = ( E evalSub1 F ) |
19 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
20 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
21 |
18 1 10 19 20 14
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
22 |
21 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
23 |
22
|
snssd |
|- ( ph -> { A } C_ ( Base ` E ) ) |
24 |
17 23
|
unssd |
|- ( ph -> ( F u. { A } ) C_ ( Base ` E ) ) |
25 |
10 13 24
|
fldgenssid |
|- ( ph -> ( F u. { A } ) C_ ( E fldGen ( F u. { A } ) ) ) |
26 |
25
|
unssad |
|- ( ph -> F C_ ( E fldGen ( F u. { A } ) ) ) |
27 |
|
ressabs |
|- ( ( ( E fldGen ( F u. { A } ) ) e. _V /\ F C_ ( E fldGen ( F u. { A } ) ) ) -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) = ( E |`s F ) ) |
28 |
9 26 27
|
sylancr |
|- ( ph -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) = ( E |`s F ) ) |
29 |
8 28
|
eqtrid |
|- ( ph -> ( L |`s F ) = ( E |`s F ) ) |
30 |
29 1
|
eqtr4di |
|- ( ph -> ( L |`s F ) = K ) |