Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
8 |
|
eqid |
|- ( E evalSub1 F ) = ( E evalSub1 F ) |
9 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
10 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
11 |
|
fveq2 |
|- ( q = p -> ( ( E evalSub1 F ) ` q ) = ( ( E evalSub1 F ) ` p ) ) |
12 |
11
|
fveq1d |
|- ( q = p -> ( ( ( E evalSub1 F ) ` q ) ` A ) = ( ( ( E evalSub1 F ) ` p ) ` A ) ) |
13 |
12
|
cbvmptv |
|- ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) = ( p e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` p ) ` A ) ) |
14 |
|
eceq1 |
|- ( y = x -> [ y ] ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) = [ x ] ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) |
15 |
14
|
cbvmptv |
|- ( y e. ( Base ` ( Poly1 ` K ) ) |-> [ y ] ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) = ( x e. ( Base ` ( Poly1 ` K ) ) |-> [ x ] ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) |
16 |
|
eqid |
|- ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) = ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) |
17 |
|
eqid |
|- ( ( Poly1 ` K ) /s ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) = ( ( Poly1 ` K ) /s ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) |
18 |
|
imaeq2 |
|- ( r = p -> ( ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " r ) = ( ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " p ) ) |
19 |
18
|
unieqd |
|- ( r = p -> U. ( ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " r ) = U. ( ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " p ) ) |
20 |
19
|
cbvmptv |
|- ( r e. ( Base ` ( ( Poly1 ` K ) /s ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) ) |-> U. ( ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " r ) ) = ( p e. ( Base ` ( ( Poly1 ` K ) /s ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) ) |-> U. ( ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " p ) ) |
21 |
|
eqid |
|- ( rem1p ` K ) = ( rem1p ` K ) |
22 |
|
oveq1 |
|- ( q = p -> ( q ( rem1p ` K ) ( M ` A ) ) = ( p ( rem1p ` K ) ( M ` A ) ) ) |
23 |
22
|
cbvmptv |
|- ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( q ( rem1p ` K ) ( M ` A ) ) ) = ( p e. ( Base ` ( Poly1 ` K ) ) |-> ( p ( rem1p ` K ) ( M ` A ) ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 13 15 16 17 20 21 23
|
algextdeglem6 |
|- ( ph -> ( dim ` ( ( Poly1 ` K ) /s ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) ) = ( dim ` ( ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( q ( rem1p ` K ) ( M ` A ) ) ) "s ( Poly1 ` K ) ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 13 15 16 17 20
|
algextdeglem4 |
|- ( ph -> ( dim ` ( ( Poly1 ` K ) /s ( ( Poly1 ` K ) ~QG ( `' ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( ( ( E evalSub1 F ) ` q ) ` A ) ) " { ( 0g ` L ) } ) ) ) ) = ( L [:] K ) ) |
26 |
|
eqid |
|- ( `' ( deg1 ` K ) " ( -oo [,) ( D ` ( M ` A ) ) ) ) = ( `' ( deg1 ` K ) " ( -oo [,) ( D ` ( M ` A ) ) ) ) |
27 |
1 2 3 4 5 6 7 8 9 10 13 15 16 17 20 21 23 26
|
algextdeglem8 |
|- ( ph -> ( dim ` ( ( q e. ( Base ` ( Poly1 ` K ) ) |-> ( q ( rem1p ` K ) ( M ` A ) ) ) "s ( Poly1 ` K ) ) ) = ( D ` ( M ` A ) ) ) |
28 |
24 25 27
|
3eqtr3d |
|- ( ph -> ( L [:] K ) = ( D ` ( M ` A ) ) ) |