Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
16 |
|
algextdeglem.r |
|- R = ( rem1p ` K ) |
17 |
|
algextdeglem.h |
|- H = ( p e. U |-> ( p R ( M ` A ) ) ) |
18 |
|
algextdeglem.t |
|- T = ( `' ( deg1 ` K ) " ( -oo [,) ( D ` ( M ` A ) ) ) ) |
19 |
|
eqidd |
|- ( ph -> ( H "s P ) = ( H "s P ) ) |
20 |
10
|
a1i |
|- ( ph -> U = ( Base ` P ) ) |
21 |
1
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> K e. DivRing ) |
22 |
6 21
|
syl |
|- ( ph -> K e. DivRing ) |
23 |
22
|
drngringd |
|- ( ph -> K e. Ring ) |
24 |
23
|
adantr |
|- ( ( ph /\ p e. U ) -> K e. Ring ) |
25 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
26 |
|
eqid |
|- ( 0g ` ( Poly1 ` E ) ) = ( 0g ` ( Poly1 ` E ) ) |
27 |
1
|
fveq2i |
|- ( Monic1p ` K ) = ( Monic1p ` ( E |`s F ) ) |
28 |
26 5 6 4 7 27
|
minplym1p |
|- ( ph -> ( M ` A ) e. ( Monic1p ` K ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ p e. U ) -> ( M ` A ) e. ( Monic1p ` K ) ) |
30 |
|
eqid |
|- ( Unic1p ` K ) = ( Unic1p ` K ) |
31 |
|
eqid |
|- ( Monic1p ` K ) = ( Monic1p ` K ) |
32 |
30 31
|
mon1puc1p |
|- ( ( K e. Ring /\ ( M ` A ) e. ( Monic1p ` K ) ) -> ( M ` A ) e. ( Unic1p ` K ) ) |
33 |
24 29 32
|
syl2anc |
|- ( ( ph /\ p e. U ) -> ( M ` A ) e. ( Unic1p ` K ) ) |
34 |
16 9 10 30
|
r1pcl |
|- ( ( K e. Ring /\ p e. U /\ ( M ` A ) e. ( Unic1p ` K ) ) -> ( p R ( M ` A ) ) e. U ) |
35 |
24 25 33 34
|
syl3anc |
|- ( ( ph /\ p e. U ) -> ( p R ( M ` A ) ) e. U ) |
36 |
|
eqid |
|- ( deg1 ` K ) = ( deg1 ` K ) |
37 |
16 9 10 30 36
|
r1pdeglt |
|- ( ( K e. Ring /\ p e. U /\ ( M ` A ) e. ( Unic1p ` K ) ) -> ( ( deg1 ` K ) ` ( p R ( M ` A ) ) ) < ( ( deg1 ` K ) ` ( M ` A ) ) ) |
38 |
24 25 33 37
|
syl3anc |
|- ( ( ph /\ p e. U ) -> ( ( deg1 ` K ) ` ( p R ( M ` A ) ) ) < ( ( deg1 ` K ) ` ( M ` A ) ) ) |
39 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
40 |
9 39
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
41 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
42 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
43 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
44 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
45 |
6 44
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
46 |
8 1 41 42 43 45
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
47 |
46 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
48 |
|
eqid |
|- { p e. dom O | ( ( O ` p ) ` A ) = ( 0g ` E ) } = { p e. dom O | ( ( O ` p ) ` A ) = ( 0g ` E ) } |
49 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
50 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
51 |
8 40 41 5 6 47 42 48 49 50 4
|
minplycl |
|- ( ph -> ( M ` A ) e. ( Base ` P ) ) |
52 |
51 10
|
eleqtrrdi |
|- ( ph -> ( M ` A ) e. U ) |
53 |
1 3 9 10 52 45
|
ressdeg1 |
|- ( ph -> ( D ` ( M ` A ) ) = ( ( deg1 ` K ) ` ( M ` A ) ) ) |
54 |
53
|
adantr |
|- ( ( ph /\ p e. U ) -> ( D ` ( M ` A ) ) = ( ( deg1 ` K ) ` ( M ` A ) ) ) |
55 |
38 54
|
breqtrrd |
|- ( ( ph /\ p e. U ) -> ( ( deg1 ` K ) ` ( p R ( M ` A ) ) ) < ( D ` ( M ` A ) ) ) |
56 |
5
|
flddrngd |
|- ( ph -> E e. DivRing ) |
57 |
56
|
drngringd |
|- ( ph -> E e. Ring ) |
58 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
59 |
|
eqid |
|- ( PwSer1 ` K ) = ( PwSer1 ` K ) |
60 |
|
eqid |
|- ( Base ` ( PwSer1 ` K ) ) = ( Base ` ( PwSer1 ` K ) ) |
61 |
|
eqid |
|- ( Base ` ( Poly1 ` E ) ) = ( Base ` ( Poly1 ` E ) ) |
62 |
58 1 9 10 45 59 60 61
|
ressply1bas2 |
|- ( ph -> U = ( ( Base ` ( PwSer1 ` K ) ) i^i ( Base ` ( Poly1 ` E ) ) ) ) |
63 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` K ) ) i^i ( Base ` ( Poly1 ` E ) ) ) C_ ( Base ` ( Poly1 ` E ) ) |
64 |
62 63
|
eqsstrdi |
|- ( ph -> U C_ ( Base ` ( Poly1 ` E ) ) ) |
65 |
64 52
|
sseldd |
|- ( ph -> ( M ` A ) e. ( Base ` ( Poly1 ` E ) ) ) |
66 |
26 5 6 4 7
|
irngnminplynz |
|- ( ph -> ( M ` A ) =/= ( 0g ` ( Poly1 ` E ) ) ) |
67 |
3 58 26 61
|
deg1nn0cl |
|- ( ( E e. Ring /\ ( M ` A ) e. ( Base ` ( Poly1 ` E ) ) /\ ( M ` A ) =/= ( 0g ` ( Poly1 ` E ) ) ) -> ( D ` ( M ` A ) ) e. NN0 ) |
68 |
57 65 66 67
|
syl3anc |
|- ( ph -> ( D ` ( M ` A ) ) e. NN0 ) |
69 |
9 36 18 68 23 10
|
ply1degleel |
|- ( ph -> ( ( p R ( M ` A ) ) e. T <-> ( ( p R ( M ` A ) ) e. U /\ ( ( deg1 ` K ) ` ( p R ( M ` A ) ) ) < ( D ` ( M ` A ) ) ) ) ) |
70 |
69
|
adantr |
|- ( ( ph /\ p e. U ) -> ( ( p R ( M ` A ) ) e. T <-> ( ( p R ( M ` A ) ) e. U /\ ( ( deg1 ` K ) ` ( p R ( M ` A ) ) ) < ( D ` ( M ` A ) ) ) ) ) |
71 |
35 55 70
|
mpbir2and |
|- ( ( ph /\ p e. U ) -> ( p R ( M ` A ) ) e. T ) |
72 |
71
|
ralrimiva |
|- ( ph -> A. p e. U ( p R ( M ` A ) ) e. T ) |
73 |
|
oveq1 |
|- ( p = q -> ( p R ( M ` A ) ) = ( q R ( M ` A ) ) ) |
74 |
73
|
eqeq2d |
|- ( p = q -> ( q = ( p R ( M ` A ) ) <-> q = ( q R ( M ` A ) ) ) ) |
75 |
|
eqcom |
|- ( q = ( q R ( M ` A ) ) <-> ( q R ( M ` A ) ) = q ) |
76 |
74 75
|
bitrdi |
|- ( p = q -> ( q = ( p R ( M ` A ) ) <-> ( q R ( M ` A ) ) = q ) ) |
77 |
9 36 18 68 23 10
|
ply1degltel |
|- ( ph -> ( q e. T <-> ( q e. U /\ ( ( deg1 ` K ) ` q ) <_ ( ( D ` ( M ` A ) ) - 1 ) ) ) ) |
78 |
77
|
simprbda |
|- ( ( ph /\ q e. T ) -> q e. U ) |
79 |
77
|
simplbda |
|- ( ( ph /\ q e. T ) -> ( ( deg1 ` K ) ` q ) <_ ( ( D ` ( M ` A ) ) - 1 ) ) |
80 |
53
|
oveq1d |
|- ( ph -> ( ( D ` ( M ` A ) ) - 1 ) = ( ( ( deg1 ` K ) ` ( M ` A ) ) - 1 ) ) |
81 |
80
|
adantr |
|- ( ( ph /\ q e. T ) -> ( ( D ` ( M ` A ) ) - 1 ) = ( ( ( deg1 ` K ) ` ( M ` A ) ) - 1 ) ) |
82 |
79 81
|
breqtrd |
|- ( ( ph /\ q e. T ) -> ( ( deg1 ` K ) ` q ) <_ ( ( ( deg1 ` K ) ` ( M ` A ) ) - 1 ) ) |
83 |
36 9 10
|
deg1cl |
|- ( q e. U -> ( ( deg1 ` K ) ` q ) e. ( NN0 u. { -oo } ) ) |
84 |
78 83
|
syl |
|- ( ( ph /\ q e. T ) -> ( ( deg1 ` K ) ` q ) e. ( NN0 u. { -oo } ) ) |
85 |
68
|
nn0zd |
|- ( ph -> ( D ` ( M ` A ) ) e. ZZ ) |
86 |
53 85
|
eqeltrrd |
|- ( ph -> ( ( deg1 ` K ) ` ( M ` A ) ) e. ZZ ) |
87 |
86
|
adantr |
|- ( ( ph /\ q e. T ) -> ( ( deg1 ` K ) ` ( M ` A ) ) e. ZZ ) |
88 |
|
degltlem1 |
|- ( ( ( ( deg1 ` K ) ` q ) e. ( NN0 u. { -oo } ) /\ ( ( deg1 ` K ) ` ( M ` A ) ) e. ZZ ) -> ( ( ( deg1 ` K ) ` q ) < ( ( deg1 ` K ) ` ( M ` A ) ) <-> ( ( deg1 ` K ) ` q ) <_ ( ( ( deg1 ` K ) ` ( M ` A ) ) - 1 ) ) ) |
89 |
84 87 88
|
syl2anc |
|- ( ( ph /\ q e. T ) -> ( ( ( deg1 ` K ) ` q ) < ( ( deg1 ` K ) ` ( M ` A ) ) <-> ( ( deg1 ` K ) ` q ) <_ ( ( ( deg1 ` K ) ` ( M ` A ) ) - 1 ) ) ) |
90 |
82 89
|
mpbird |
|- ( ( ph /\ q e. T ) -> ( ( deg1 ` K ) ` q ) < ( ( deg1 ` K ) ` ( M ` A ) ) ) |
91 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
92 |
5 6 91
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
93 |
1 92
|
eqeltrid |
|- ( ph -> K e. Field ) |
94 |
|
fldidom |
|- ( K e. Field -> K e. IDomn ) |
95 |
93 94
|
syl |
|- ( ph -> K e. IDomn ) |
96 |
95
|
idomdomd |
|- ( ph -> K e. Domn ) |
97 |
96
|
adantr |
|- ( ( ph /\ q e. T ) -> K e. Domn ) |
98 |
23 28 32
|
syl2anc |
|- ( ph -> ( M ` A ) e. ( Unic1p ` K ) ) |
99 |
98
|
adantr |
|- ( ( ph /\ q e. T ) -> ( M ` A ) e. ( Unic1p ` K ) ) |
100 |
9 10 30 16 36 97 78 99
|
r1pid2 |
|- ( ( ph /\ q e. T ) -> ( ( q R ( M ` A ) ) = q <-> ( ( deg1 ` K ) ` q ) < ( ( deg1 ` K ) ` ( M ` A ) ) ) ) |
101 |
90 100
|
mpbird |
|- ( ( ph /\ q e. T ) -> ( q R ( M ` A ) ) = q ) |
102 |
76 78 101
|
rspcedvdw |
|- ( ( ph /\ q e. T ) -> E. p e. U q = ( p R ( M ` A ) ) ) |
103 |
102
|
ralrimiva |
|- ( ph -> A. q e. T E. p e. U q = ( p R ( M ` A ) ) ) |
104 |
17
|
fompt |
|- ( H : U -onto-> T <-> ( A. p e. U ( p R ( M ` A ) ) e. T /\ A. q e. T E. p e. U q = ( p R ( M ` A ) ) ) ) |
105 |
72 103 104
|
sylanbrc |
|- ( ph -> H : U -onto-> T ) |
106 |
9
|
ply1ring |
|- ( K e. Ring -> P e. Ring ) |
107 |
23 106
|
syl |
|- ( ph -> P e. Ring ) |
108 |
19 20 105 107
|
imasbas |
|- ( ph -> T = ( Base ` ( H "s P ) ) ) |
109 |
78
|
ex |
|- ( ph -> ( q e. T -> q e. U ) ) |
110 |
109
|
ssrdv |
|- ( ph -> T C_ U ) |
111 |
|
eqid |
|- ( P |`s T ) = ( P |`s T ) |
112 |
111 10
|
ressbas2 |
|- ( T C_ U -> T = ( Base ` ( P |`s T ) ) ) |
113 |
110 112
|
syl |
|- ( ph -> T = ( Base ` ( P |`s T ) ) ) |
114 |
|
ssidd |
|- ( ph -> T C_ T ) |
115 |
|
eqid |
|- ( H "s P ) = ( H "s P ) |
116 |
|
eqid |
|- ( Base ` ( H "s P ) ) = ( Base ` ( H "s P ) ) |
117 |
110
|
ad2antrr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> T C_ U ) |
118 |
|
simplr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> x e. T ) |
119 |
117 118
|
sseldd |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> x e. U ) |
120 |
|
simpr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> y e. T ) |
121 |
117 120
|
sseldd |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> y e. U ) |
122 |
|
foeq3 |
|- ( T = ( Base ` ( H "s P ) ) -> ( H : U -onto-> T <-> H : U -onto-> ( Base ` ( H "s P ) ) ) ) |
123 |
108 122
|
syl |
|- ( ph -> ( H : U -onto-> T <-> H : U -onto-> ( Base ` ( H "s P ) ) ) ) |
124 |
105 123
|
mpbid |
|- ( ph -> H : U -onto-> ( Base ` ( H "s P ) ) ) |
125 |
124
|
ad2antrr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> H : U -onto-> ( Base ` ( H "s P ) ) ) |
126 |
9 10 16 30 17 23 98
|
r1plmhm |
|- ( ph -> H e. ( P LMHom ( H "s P ) ) ) |
127 |
126
|
lmhmghmd |
|- ( ph -> H e. ( P GrpHom ( H "s P ) ) ) |
128 |
|
ghmmhm |
|- ( H e. ( P GrpHom ( H "s P ) ) -> H e. ( P MndHom ( H "s P ) ) ) |
129 |
127 128
|
syl |
|- ( ph -> H e. ( P MndHom ( H "s P ) ) ) |
130 |
129
|
ad2antrr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> H e. ( P MndHom ( H "s P ) ) ) |
131 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
132 |
|
eqid |
|- ( +g ` ( H "s P ) ) = ( +g ` ( H "s P ) ) |
133 |
115 10 116 119 121 125 130 131 132
|
mhmimasplusg |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( ( H ` x ) ( +g ` ( H "s P ) ) ( H ` y ) ) = ( H ` ( x ( +g ` P ) y ) ) ) |
134 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> E e. Field ) |
135 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> F e. ( SubDRing ` E ) ) |
136 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> A e. ( E IntgRing F ) ) |
137 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 119
|
algextdeglem7 |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( x e. T <-> ( H ` x ) = x ) ) |
138 |
118 137
|
mpbid |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( H ` x ) = x ) |
139 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 121
|
algextdeglem7 |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( y e. T <-> ( H ` y ) = y ) ) |
140 |
120 139
|
mpbid |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( H ` y ) = y ) |
141 |
138 140
|
oveq12d |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( ( H ` x ) ( +g ` ( H "s P ) ) ( H ` y ) ) = ( x ( +g ` ( H "s P ) ) y ) ) |
142 |
107
|
ringgrpd |
|- ( ph -> P e. Grp ) |
143 |
9 22
|
ply1lvec |
|- ( ph -> P e. LVec ) |
144 |
9 36 18 68 23
|
ply1degltlss |
|- ( ph -> T e. ( LSubSp ` P ) ) |
145 |
|
eqid |
|- ( LSubSp ` P ) = ( LSubSp ` P ) |
146 |
111 145
|
lsslvec |
|- ( ( P e. LVec /\ T e. ( LSubSp ` P ) ) -> ( P |`s T ) e. LVec ) |
147 |
143 144 146
|
syl2anc |
|- ( ph -> ( P |`s T ) e. LVec ) |
148 |
147
|
lvecgrpd |
|- ( ph -> ( P |`s T ) e. Grp ) |
149 |
10
|
issubg |
|- ( T e. ( SubGrp ` P ) <-> ( P e. Grp /\ T C_ U /\ ( P |`s T ) e. Grp ) ) |
150 |
142 110 148 149
|
syl3anbrc |
|- ( ph -> T e. ( SubGrp ` P ) ) |
151 |
150
|
ad2antrr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> T e. ( SubGrp ` P ) ) |
152 |
131
|
subgcl |
|- ( ( T e. ( SubGrp ` P ) /\ x e. T /\ y e. T ) -> ( x ( +g ` P ) y ) e. T ) |
153 |
151 118 120 152
|
syl3anc |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( x ( +g ` P ) y ) e. T ) |
154 |
142
|
ad2antrr |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> P e. Grp ) |
155 |
10 131 154 119 121
|
grpcld |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( x ( +g ` P ) y ) e. U ) |
156 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 155
|
algextdeglem7 |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( ( x ( +g ` P ) y ) e. T <-> ( H ` ( x ( +g ` P ) y ) ) = ( x ( +g ` P ) y ) ) ) |
157 |
153 156
|
mpbid |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( H ` ( x ( +g ` P ) y ) ) = ( x ( +g ` P ) y ) ) |
158 |
133 141 157
|
3eqtr3d |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( x ( +g ` ( H "s P ) ) y ) = ( x ( +g ` P ) y ) ) |
159 |
|
fvex |
|- ( deg1 ` K ) e. _V |
160 |
|
cnvexg |
|- ( ( deg1 ` K ) e. _V -> `' ( deg1 ` K ) e. _V ) |
161 |
|
imaexg |
|- ( `' ( deg1 ` K ) e. _V -> ( `' ( deg1 ` K ) " ( -oo [,) ( D ` ( M ` A ) ) ) ) e. _V ) |
162 |
159 160 161
|
mp2b |
|- ( `' ( deg1 ` K ) " ( -oo [,) ( D ` ( M ` A ) ) ) ) e. _V |
163 |
18 162
|
eqeltri |
|- T e. _V |
164 |
111 131
|
ressplusg |
|- ( T e. _V -> ( +g ` P ) = ( +g ` ( P |`s T ) ) ) |
165 |
163 164
|
ax-mp |
|- ( +g ` P ) = ( +g ` ( P |`s T ) ) |
166 |
165
|
oveqi |
|- ( x ( +g ` P ) y ) = ( x ( +g ` ( P |`s T ) ) y ) |
167 |
158 166
|
eqtrdi |
|- ( ( ( ph /\ x e. T ) /\ y e. T ) -> ( x ( +g ` ( H "s P ) ) y ) = ( x ( +g ` ( P |`s T ) ) y ) ) |
168 |
167
|
anasss |
|- ( ( ph /\ ( x e. T /\ y e. T ) ) -> ( x ( +g ` ( H "s P ) ) y ) = ( x ( +g ` ( P |`s T ) ) y ) ) |
169 |
|
simprr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> y e. T ) |
170 |
5
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> E e. Field ) |
171 |
6
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> F e. ( SubDRing ` E ) ) |
172 |
7
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> A e. ( E IntgRing F ) ) |
173 |
110
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> T C_ U ) |
174 |
173 169
|
sseldd |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> y e. U ) |
175 |
1 2 3 4 170 171 172 8 9 10 11 12 13 14 15 16 17 18 174
|
algextdeglem7 |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( y e. T <-> ( H ` y ) = y ) ) |
176 |
169 175
|
mpbid |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( H ` y ) = y ) |
177 |
176
|
oveq2d |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( x ( .s ` ( H "s P ) ) ( H ` y ) ) = ( x ( .s ` ( H "s P ) ) y ) ) |
178 |
|
simprl |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> x e. F ) |
179 |
41
|
sdrgss |
|- ( F e. ( SubDRing ` E ) -> F C_ ( Base ` E ) ) |
180 |
1 41
|
ressbas2 |
|- ( F C_ ( Base ` E ) -> F = ( Base ` K ) ) |
181 |
6 179 180
|
3syl |
|- ( ph -> F = ( Base ` K ) ) |
182 |
9
|
ply1sca |
|- ( K e. Ring -> K = ( Scalar ` P ) ) |
183 |
23 182
|
syl |
|- ( ph -> K = ( Scalar ` P ) ) |
184 |
183
|
fveq2d |
|- ( ph -> ( Base ` K ) = ( Base ` ( Scalar ` P ) ) ) |
185 |
181 184
|
eqtrd |
|- ( ph -> F = ( Base ` ( Scalar ` P ) ) ) |
186 |
185
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> F = ( Base ` ( Scalar ` P ) ) ) |
187 |
178 186
|
eleqtrd |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> x e. ( Base ` ( Scalar ` P ) ) ) |
188 |
124
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> H : U -onto-> ( Base ` ( H "s P ) ) ) |
189 |
126
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> H e. ( P LMHom ( H "s P ) ) ) |
190 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
191 |
|
eqid |
|- ( .s ` ( H "s P ) ) = ( .s ` ( H "s P ) ) |
192 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
193 |
115 10 116 187 174 188 189 190 191 192
|
lmhmimasvsca |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( x ( .s ` ( H "s P ) ) ( H ` y ) ) = ( H ` ( x ( .s ` P ) y ) ) ) |
194 |
177 193
|
eqtr3d |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( x ( .s ` ( H "s P ) ) y ) = ( H ` ( x ( .s ` P ) y ) ) ) |
195 |
71 17
|
fmptd |
|- ( ph -> H : U --> T ) |
196 |
195
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> H : U --> T ) |
197 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
198 |
143
|
lveclmodd |
|- ( ph -> P e. LMod ) |
199 |
198
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> P e. LMod ) |
200 |
10 197 190 192 199 187 174
|
lmodvscld |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( x ( .s ` P ) y ) e. U ) |
201 |
196 200
|
ffvelcdmd |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( H ` ( x ( .s ` P ) y ) ) e. T ) |
202 |
194 201
|
eqeltrd |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( x ( .s ` ( H "s P ) ) y ) e. T ) |
203 |
144
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> T e. ( LSubSp ` P ) ) |
204 |
197 190 192 145
|
lssvscl |
|- ( ( ( P e. LMod /\ T e. ( LSubSp ` P ) ) /\ ( x e. ( Base ` ( Scalar ` P ) ) /\ y e. T ) ) -> ( x ( .s ` P ) y ) e. T ) |
205 |
199 203 187 169 204
|
syl22anc |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( x ( .s ` P ) y ) e. T ) |
206 |
1 2 3 4 170 171 172 8 9 10 11 12 13 14 15 16 17 18 200
|
algextdeglem7 |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( ( x ( .s ` P ) y ) e. T <-> ( H ` ( x ( .s ` P ) y ) ) = ( x ( .s ` P ) y ) ) ) |
207 |
205 206
|
mpbid |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( H ` ( x ( .s ` P ) y ) ) = ( x ( .s ` P ) y ) ) |
208 |
111 190
|
ressvsca |
|- ( T e. _V -> ( .s ` P ) = ( .s ` ( P |`s T ) ) ) |
209 |
163 208
|
mp1i |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( .s ` P ) = ( .s ` ( P |`s T ) ) ) |
210 |
209
|
oveqd |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( x ( .s ` P ) y ) = ( x ( .s ` ( P |`s T ) ) y ) ) |
211 |
194 207 210
|
3eqtrd |
|- ( ( ph /\ ( x e. F /\ y e. T ) ) -> ( x ( .s ` ( H "s P ) ) y ) = ( x ( .s ` ( P |`s T ) ) y ) ) |
212 |
|
eqid |
|- ( Scalar ` ( H "s P ) ) = ( Scalar ` ( H "s P ) ) |
213 |
111 197
|
resssca |
|- ( T e. _V -> ( Scalar ` P ) = ( Scalar ` ( P |`s T ) ) ) |
214 |
163 213
|
ax-mp |
|- ( Scalar ` P ) = ( Scalar ` ( P |`s T ) ) |
215 |
19 20 105 107 197
|
imassca |
|- ( ph -> ( Scalar ` P ) = ( Scalar ` ( H "s P ) ) ) |
216 |
183 215
|
eqtrd |
|- ( ph -> K = ( Scalar ` ( H "s P ) ) ) |
217 |
216
|
fveq2d |
|- ( ph -> ( Base ` K ) = ( Base ` ( Scalar ` ( H "s P ) ) ) ) |
218 |
181 217
|
eqtrd |
|- ( ph -> F = ( Base ` ( Scalar ` ( H "s P ) ) ) ) |
219 |
215
|
fveq2d |
|- ( ph -> ( +g ` ( Scalar ` P ) ) = ( +g ` ( Scalar ` ( H "s P ) ) ) ) |
220 |
219
|
oveqd |
|- ( ph -> ( x ( +g ` ( Scalar ` P ) ) y ) = ( x ( +g ` ( Scalar ` ( H "s P ) ) ) y ) ) |
221 |
220
|
eqcomd |
|- ( ph -> ( x ( +g ` ( Scalar ` ( H "s P ) ) ) y ) = ( x ( +g ` ( Scalar ` P ) ) y ) ) |
222 |
221
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. F ) ) -> ( x ( +g ` ( Scalar ` ( H "s P ) ) ) y ) = ( x ( +g ` ( Scalar ` P ) ) y ) ) |
223 |
|
lmhmlvec2 |
|- ( ( P e. LVec /\ H e. ( P LMHom ( H "s P ) ) ) -> ( H "s P ) e. LVec ) |
224 |
143 126 223
|
syl2anc |
|- ( ph -> ( H "s P ) e. LVec ) |
225 |
108 113 114 168 202 211 212 214 218 185 222 224 147
|
dimpropd |
|- ( ph -> ( dim ` ( H "s P ) ) = ( dim ` ( P |`s T ) ) ) |
226 |
9 36 18 68 22 111
|
ply1degltdim |
|- ( ph -> ( dim ` ( P |`s T ) ) = ( D ` ( M ` A ) ) ) |
227 |
225 226
|
eqtrd |
|- ( ph -> ( dim ` ( H "s P ) ) = ( D ` ( M ` A ) ) ) |